994 resultados para QTc prolongation effect
Resumo:
Introduction: The Trendelenburg Test (TT) is used to assess the functional strength of the hip abductor muscles (HABD), their ability to control frontal plane motion of the pelvis, and the ability of the lumbopelvic complex to transfer load into single leg stance. Rationale: Although a standard method to perform the test has been described for use within clinical populations, no study has directly investigated Trendelenburg’s hypotheses. Purpose: To investigate the validity of the TT using an ultrasound guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in HABD strength would result in the theorized mechanical compensatory strategies measured during the TT. Methods: Quasi-experimental design using a convenience sample of nine healthy males. Only subjects with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Force dynamometry was used to evaluation HABD strength (%BW). 2D mechanics were used to evaluate contralateral pelvic drop (cMPD), change in contralateral pelvic drop (∆cMPD), ipsilateral hip adduction (iHADD) and ipsilateral trunk sway (TRUNK) measured in degrees (°). All measures were collected prior to and following a UNB on the superior gluteal nerve performed by an interventional radiologist. Results: Subjects’ age was median 31yrs (IQR:22-32yrs); and weight was median 73kg (IQR:67-81kg). An average 52% reduction of HABD strength (z=2.36,p=0.02) resulted following the UNB. No differences were found in cMPD or ∆cMPD (z=0.01,p= 0.99, z=-0.67,p=0.49). Individual changes in biomechanics show no consistency between subjects and non-systematic changes across the group. One subject demonstrated the mechanical compensations described by Trendelenburg. Discussion: The TT should not be used as screening measure for HABD strength in populations demonstrating strength greater than 30%BW but reserved for use with populations with marked HABD weakness. Importance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.
Resumo:
Interview and discussion on Robot University and AUTHENTIC IN ALL CAPS, transmedia creative works by Christy Dena.
Resumo:
Objectives: To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Design: Controlled laboratory study, longitudinal. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. Results: The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Conclusions: The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy.
Resumo:
Introduction: Eccentric exercise (EE) is a commonly used treatment for Achilles tendinopathy. While vibrations in the 8–12 Hz frequency range generated during eccentric muscle actions have been put forward as a potential mechanism for the beneficial effect of EE, optimal loading parameters required to expedite recovery are currently unknown. Alfredson's original protocol employed 90 repetitions of eccentric loading, however abbreviated protocols consisting of fewer repetitions (typically 45) have been developed, albeit with less beneficial effect. Given that 8–12 Hz vibrations generated during isometric muscle actions have been previously shown to increase with fatigue, this research evaluated the effect of exercise repetition on motor output vibrations generated during EE by investigating the frequency characteristics of ground reaction force (GRF) recorded throughout the 90 repetitions of Alfredson's protocol. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. GRF was recorded at a frequency of 1000 Hz throughout the exercise protocol. The frequency power spectrum of the resultant GRF was calculated and normalized to total power. Relative spectral power was summed over 1 Hz widows within the frequency rage 7.5–11.5 Hz. The effect of each additional exercise set (15 repetitions) on the relative power within each widow was investigated using a general linear modelling approach. Results: The magnitude of peak relative power within the 7.5–11.5 Hz bandwidth increased across the six exercise sets from 0.03 in exercise set one to 0.12 in exercise set six (P < 0.05). Following the 4th set of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Discussion: This study has demonstrated that successive repetitions of eccentric loading over six exercise sets results in an increase in the amplitude of motor output vibrations in the 7.5–11.5 Hz bandwidth, with an increase in the frequency of these vibrations occurring after the 4th set (60th repetition). These findings are consistent with findings from previous studies of muscle fatigue. Assuming that the magnitude and frequency of these vibrations represent important stimuli for tendon remodelling as hypothesized within the literature, the findings of this study question the role of abbreviated EE protocols and raise the question; can EE protocols for tendinopathy be optimized by performing eccentric loading to fatigue?
Resumo:
This paper presents an experimental study on the resistance of lightweight aggregate concretes to chloride-ion penetration in comparison to that of normal weight concrete of similar w/c. Salt ponding test (based on AASHTO T 259), rapid chloride permeability test (ASTM C 1202) and rapid migration test (NT Build 492) were carried out to evaluate the concrete resistance to the chloride-ion penetration. Results indicate that in general the resistance of the LWAC to the chloride-ion penetration was in the same order as that of NWAC of similar w/c. However, the increase in cumulative LWA volume and the incorporation of finer LWA particles led to higher charge passed, migration coefficient, and diffusion coefficient. Since the LWACs had lower 28-day compressive strength compared with that of the NWAC of similar w/c, the LWACs may have equal or better resistance to the chloride-ion penetration compared with the NWAC of equivalent strength. The trend of the resistance of concretes to chloride-ion penetration determined by the three test methods was reasonably consistent although there were some discrepancies due to different test methods.
Resumo:
Introduction. In vitro spine biomechanical testing has been central to many advances in understanding the physiology and pathology of the human spine. Owing to the difficulty in obtaining sufficient numbers of human samples to conduct these studies, animal spines have been accepted as a substitute model. However, it is difficult to compare results from different studies, as they use different preparation, testing and data collection methods. The aim of this study was to identify the effect of repeated cyclic loading on bovine spine segment stiffness. It also aimed to quantify the effect of multiple freeze-thaw sequences, as many tests would be difficult to complete in a single session [1-3]. Materials and Methods. Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments including levels T4-T11 (n=28). These were divided into two equal groups. Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37 degrees C and 100% humidity, using moment control to a maximum plus/minus 1.75 Nm with a loading rate of 0.3 Nm per second. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 100, 200, 300, 400 and 500. Group (B) were tested with 10 load cycles after each of 5 freeze thaw sequences. Data was collected from the tenth load cycle after each sequence. Statistical analysis of the data was performed using paired samples t-tests, ANOVA and generalized estimating equations. Results. The data were confirmed as having a normal distribution. 1. There were significant reductions in mean stiffness in flexion/extension (-20%; P=0.001) and lateral bending (-17%; P=0.009) over the 500 load cycles. However, there was no statistically significant change in axial rotation (P=0.152) 2. There was no statistically significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (p=0.879) and axial rotation (p=0.07). However, there was a significant reduction in stiffness in lateral bending (-26%; p=0.007) Conclusion. Biomechanical testing of immature bovine spine motion segments requires careful interpretation. The effect of the number of load cycles as well as the number of freeze-thaw cycles on the stiffness of the motion segments depends on the axis of main movement.
Resumo:
To date, the formation of deposits on heat exchanger surfaces is the least understood problem in the design of heat exchangers for processing industries. Dr East has related the structure of the deposits to solution composition and has developed predictive models for composite fouling of calcium oxalate and silica in sugar factory evaporators.
Resumo:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.
Resumo:
Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.
Resumo:
In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K.
Resumo:
In this paper, the collision of a C36, with D6h symmetry, on diamond (001)-(/2×1) surface was investigated using molecular dynamics (MD) simulation based on the semi-empirical Brenner potential. The incident kinetic energy of the C36 ranges from 20 to 150 eV per cluster. The collision dynamics was investigated as a function of impact energy Ein. The C36 cluster was first impacted towards the center of two dimers with a fixed orientation. It was found that when Ein was lower than 30 eV, C36 bounces off the surface without breaking up. Increasing Ein to 30-45 eV, bonds were formed between C36 and surface dimer atoms, and the adsorbed C36 retained its original free-cluster structure. Around 50-60 eV, the C36 rebounded from the surface with cage defects. Above 70 eV, fragmentation both in the cluster and on the surface was observed. Our simulation supported the experimental findings that during low-energy cluster beam deposition small fullerenes could keep their original structure after adsorption (i.e. the memory effect), if Ein is within a certain range. Furthermore, we found that the energy threshold for chemisorption is sensitive to the orientation of the incident C36 and its impact position on the asymmetric surface.
Resumo:
Introduction: The accurate identification of tissue electron densities is of great importance for Monte Carlo (MC) dose calculations. When converting patient CT data into a voxelised format suitable for MC simulations, however, it is common to simplify the assignment of electron densities so that the complex tissues existing in the human body are categorized into a few basic types. This study examines the effects that the assignment of tissue types and the calculation of densities can have on the results of MC simulations, for the particular case of a Siemen’s Sensation 4 CT scanner located in a radiotherapy centre where QA measurements are routinely made using 11 tissue types (plus air). Methods: DOSXYZnrc phantoms are generated from CT data, using the CTCREATE user code, with the relationship between Hounsfield units (HU) and density determined via linear interpolation between a series of specified points on the ‘CT-density ramp’ (see Figure 1(a)). Tissue types are assigned according to HU ranges. Each voxel in the DOSXYZnrc phantom therefore has an electron density (electrons/cm3) defined by the product of the mass density (from the HU conversion) and the intrinsic electron density (electrons /gram) (from the material assignment), in that voxel. In this study, we consider the problems of density conversion and material identification separately: the CT-density ramp is simplified by decreasing the number of points which define it from 12 down to 8, 3 and 2; and the material-type-assignment is varied by defining the materials which comprise our test phantom (a Supertech head) as two tissues and bone, two plastics and bone, water only and (as an extreme case) lead only. The effect of these parameters on radiological thickness maps derived from simulated portal images is investigated. Results & Discussion: Increasing the degree of simplification of the CT-density ramp results in an increasing effect on the resulting radiological thickness calculated for the Supertech head phantom. For instance, defining the CT-density ramp using 8 points, instead of 12, results in a maximum radiological thickness change of 0.2 cm, whereas defining the CT-density ramp using only 2 points results in a maximum radiological thickness change of 11.2 cm. Changing the definition of the materials comprising the phantom between water and plastic and tissue results in millimetre-scale changes to the resulting radiological thickness. When the entire phantom is defined as lead, this alteration changes the calculated radiological thickness by a maximum of 9.7 cm. Evidently, the simplification of the CT-density ramp has a greater effect on the resulting radiological thickness map than does the alteration of the assignment of tissue types. Conclusions: It is possible to alter the definitions of the tissue types comprising the phantom (or patient) without substantially altering the results of simulated portal images. However, these images are very sensitive to the accurate identification of the HU-density relationship. When converting data from a patient’s CT into a MC simulation phantom, therefore, all possible care should be taken to accurately reproduce the conversion between HU and mass density, for the specific CT scanner used. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital (RBWH), Brisbane, Australia. The authors are grateful to the staff of the RBWH, especially Darren Cassidy, for assistance in obtaining the phantom CT data used in this study. The authors also wish to thank Cathy Hargrave, of QUT, for assistance in formatting the CT data, using the Pinnacle TPS. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.
Resumo:
Gaelic Games are the indigenous sports played in Ireland, the most popular being Gaelic football and hurling. The games are contact sports and the physical demands are thought to be similar to those of Australian Rules football, rugby union, rugby league, field hockey, and lacrosse (Delahunt et al., 2011). The difference in chronological age between children in a single age group is known as relative age and its consequences as the RAE, whereby younger players are disadvantaged (Del Campo et al., 2010). The purpose of this study was to describe the physical and performance profile of sub-elite juvenile Gaelic Games players and to establish if a RAE is present in this cohort and any influence physiological moderator variables may have on this. Following receipt of ethical approval (EHSREC11-45), six sub-elite county development squads (Under-14/15/16 age groups, male, n=115) volunteered to partake in the study. Anthropometric data including skin folds and girths were collected. A number of field tests of physical performance including 5 and 20m speed, vertical and broad jump distance, and an estimate of VO2max were carried out. Descriptive data are presented as Mean SD. Juvenile sub-elite Gaelic Games players aged 14.53 0.82 y were 172.87 7.63 cm tall, had a mass of 64.74 11.06 kg, a BMI of 21.57 2.82 kg.m-2 and 9.22 4.78 % body fat. Flexibility, measured by sit and reach was 33.62 6.86 cm and lower limb power measured by vertical and broad jump were 42.19 5.73 and 191.16 25.26 cm, respectively. Participant time to complete 5m, 20m and an agility test (T-Test) was 1.12 0.07, 3.31 0.30 and 9.31 0.55 s respectively. Participant’s estimated VO2max was 48.23 5.05 ml.kg.min-1. Chi-Square analysis of birth month by quartile (Q1 = January-March) revealed that a RAE was present in this cohort, whereby an over-representation of players born in Q1 compared with Q2, Q3 and Q4 was evident (2 = 14.078, df = 3, p = 0.003). Kruskal-Wallis analysis of the data revealed no significant difference in any of the performance parameters based on quartile of birth (Alpha level = 0.05).This study provides a physical performance profile of juvenile sub-elite Gaelic Games players, comparable with those of other sports such as soccer and rugby. This novel data can inform us of the physical requirements of the sport. The evidence of a RAE is similar to that observed in other contact sports such as soccer and rugby league (Carling et al, 2009; Till et al, 2010). Although a RAE exists in this cohort, this cannot be explained by any physical/physiological moderator variables. Carling C et al. (2009). Scandinavian Journal of Medicine and Science in Sport 19, 3-9. Delahunt E et al. (2011). Journal of Athletic Training 46, 241-5. Del Campo DG et al. (2010). Journal of Sport Science and Medicine 9, 190-198. Delorme N et al. (2010). European Journal of Sport Science 10, 91-96. Till K et al. (2010). Scandinavian Journal of Medicine and Science in Sports 20, 320-329.