987 resultados para QINGHAI-TIBETAN PLATEAU
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
The past three decades have seen numerous attempts to numerically model stress and strain patterns in the lithosphere of the Earth on both global and regional scales. This efforts have been indispensable in identifying the features we need to include in our endeavour to develop better models of our planet’s lithosphere and they have also raised our awareness for the many unresolved issue in the deep geodynamical issues that need to be addressed in the future. Nonetheless, in most models, the lithosphere is treated as a single layer with depth-averaged properties, and as the same distribution in the stress and strain fields, and as deforming under plane strain. All these above make a great hander for its reality and degree of recognition. As the beginning in this paper, some principal numerical models and results on the evolution of Tibetan plateau are reviewed and analyzed. Then, the geological and geophysical expedition on the Western Himalayan Syntaxis is briefly reviewed. Furthermore, we analysis the feature in deep geophysical field studies in this area and adjacent regions. Because, for most continents, stress models driven by plate boundary forces have successfully reproduced the main characteristics of the stress and strain field, we present a set of three-dimensional models of lithosphere system for a simplified geometry of the Western Himalayan Syntaxis area and its adjacent regions, where we try to match the first-order characteristics of the stress and strain fields of lithosphere since 10 Ma, and deformation and geodynamical evolution process in former 2Ma. Of course, the kinematic boundary conditions of the stress models driven by plate boundary forces were applied. The rheology plays a significant role in the lithospheric tectonics, which lead to different rheological parameters were used in different works although the have the same constitutive equations in models. So, in this paper we do not aim to produce all characteristics of the Western Himalayan Syntaxis areas’ stress and strain fields by the choices of various parameters, but rather the dynamic response between various rheological parameters and stress and strain fields. We have chosen to concentrate on the importance of rheology and lateral strength variations for lithospheric stress and strain patterns and use our findings to build a model of the Western Himalayan Syntaxis areas. In doing so, we want to go beyond purely elastic models or purely viscoelastic models. Compared the results of the crust viscosity in the Western Himalayan Syntaxis areas, we believed that, when various viscoelastic models are adopted, the selection of the coefficient of viscosity in the Western Syntaxis area has important influence on the its uplifts and evolutions. A wider uplift ranges and gently elevation was observed at the same time when a lower viscosity was used in our models, and vice versa. Data of stress magnitudes are not available, but it is clear that the stress levels must be at or below the failure threshold of rock under compression. Under these criteria, the calculation results show that the viscosity in the Western Syntaxis area should be smaller than 1023Pa.s When elastic model is adopted in relatively rigid Tarim basin, obvious changes are induced to the stress and strain fields of the whole Western Syntaxis area. We found that rigid block of lithosphere reduced stress levels within its interior and that, at the edges of such regions, stress orientation can change. Furthermore there is no evidence that such rigid regions act as stress barriers in that they shield areas in opposite sides of the structure from the influence of one another. In our models, the upper crustal material of the Western Syntaxis area does not turns to move westward. Whereas, because of the stress and strain fields have been decoupling at the interior of the lithosphere, we can get the results that the deep material must not move westward.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
The most prominent tectonic and environmental events during the Cenozoic in Asia are the uplift of the Himalaya-Tibetan plateau, aridification in the Asian interior, and onset of the Asian monsoons. These caused more humid conditions in southeastern China and the formation of inland deserts in northwestern China. The 22 Ma eolian deposits in northern China provide an excellent terrestrial record relative to the above environmental events. Up to date, many studies have focused on the geochemical characters of the late Mio-Pleistocene eolian deposits, however, the geochemical characteristics of the Miocene loess and soils is still much less known. In this study, the elemental and Sr-Nd isotopic compositions of the eolian deposits from the Qinan (from 22.0 to 6.2 Ma) and the Xifeng (from 3.5 Ma until now) loess-soil sections were analyzed to examine the grain size effects on the element concentrations and the implications about the dust origin and climate. The main results are as follows: 1. The contents of Si, Na, Zr and Sr are higher in the coarser fractions while Ti and Nb have the highest contents in the 2-8 μm fractions. Al, Fe, Mg, K, Mn, Rb, Cu, Ga, Zn, V, Cr, Ni, LOI have clear relationships with grain-size, more abundant in the fine fraction while non significant relationship is observed for Y. Based on these features, we suggest that K2O/Al2O3 ratio can be used to address the dust provenance, and that VR (Vogt ratio = (Al2O3+K2O)/(MgO+CaO+Na2O)) can be used as a chemical weathering proxy for the Miocene eolian deposits because of their relative independence on the grain size. Meanwhile, SiO2/Al2O3 molar ratio is a best geochemical indicator of original eolian grain size, as suggested in earlier studies. 2. Analyses on the Sr and Nd isotope composition of the last glacial loess samples (L1) and comparison with the data from the deserts in northern China suggest that that Taklimakan desert is unlikely to be the main source region of the eolian dust. In contrast, these data suggest greater contributions of the Tengger, Badain Jaran and Qaidam deserts to the eolian dust during the last glacial cycle. Since the geochemical compositions (major, trace, REE and Sr, Nd isotope) of loess samples for the past 22 Ma are broadly similar with the samples from L1, these data trend to suggest relatively stable and insignificant changes of dust sources over the past 22 Ma. 3. Chemical weathering is stronger for Miocene paleosol samples than for the Plio-Pleistocene ones, showing warmer/more humid climatic conditions with a stronger summer monsoon in the Miocene. However, chemical weathering is typical of Ca-Na removal stage, suggesting a climate range from semiarid to subhumid conditions. These support the notion about the formation of a semi-arid to semi-humid monsoonal regime by the early Miocene, as is consistent with earlier studies.
Resumo:
The Tarim Block is located between the Tianshan Mountains in the north and the Qinghai-Tibet Plateau in the south and is one of three major Precambrian cratonic blocks of China. Obviously, the Paleozoic paleogeographic position and tectonic evolution for the Tarim Block are very important not only for the study of the formation and evolution of the Altaids, but also for the investigation of the distributions of Paleozoic marine oil and gas in the Tarim Basin. According to the distributions of Paleozoic strata and suface outcrops in the Tarim Block, the Aksu-Keping-Bachu area in the northwestern part of the Tarim Block were selected for Ordovician paleomagnetic studies. A total of 432 drill-core samples form 44 sampling sites were collected and the samples comprise mainly limestones, argillaceous limestones and argillaceous sandstones Based on systematic study of rock magnetism and paleomagnetism, all the samples could be divided into two types: the predominant magnetic minerals of the first type are hematite and subordinate magnetite. For the specimens from this type, characteristic remanent magnetization (ChRM) could generally be isolated by demagnetization temperatures larger than 600℃; we assigned this ChRM as component A; whilst magnetite is the predominant magnetic mineral of the second type; progressive demagnetization yielded another ChRM (component B) with unblocking temperatures of 550-570℃. The component A obtained from the majority of Ordovician specimens has dual polarity and a negative fold test result; we interpreted it as a remagnetization component acquired during the Cenozoic period. The component B can only be isolated from some Middle-Late Ordovician specimens with unique normal polarity, and has a positive fold test result at 95% confidence. The corresponding paleomagnetic pole of this characteristic component is at 40.7°S, 183.3°E with dp/dm = 4.8°/6.9° and is in great difference with the available post-Late Paleozoic paleopoles for the Tarim Block, indicating that the characteristic component B could be primary magnetization acquired in the formation of the rocks. The new Ordovician paleomagnetic result shows that the Tarim Block was located in the low- to intermediate- latitude regions of the Southern Hemisphere during the Middle-Late Ordovician period, and is very likely to situate, together with the South China Block, in the western margin of the Australian-Antarctic continents of East Gondwana. However, it may have experienced a large northward drift and clockwise rotation after the Middle-Late Ordovician period, which resulted in the separation of the Tarim Block from the East Gondwanaland and subsequent crossing of the paleo-equator; by the Late Carboniferous period the Tarim Block may have accreted to the southern margin of the Altaids.
Resumo:
Movements of separation and convergence between the continental plates, as well as the interaction beween the lithosphere and asthenosphere is the dominant factor in plate evolution. Moreover, those phenomena, the formation, enrichment and storage of energy and mineral strorage, as well as intraplate earthquakes are all relate to plate movement and evolution. Therefore, the study of continental lithosphere, is not only helpful to analysing the dynamic model between lithosphere and asthenoshere as well as different plates, but also important to the nation's economy and the people's livelihood. And the lithospheric thickness or Lithosphere-Asthenosphere Boundary (LAB) is one of the most important parameters in study of continental lithospheric formation and evolution. Chinese continent composed by many small plates, possesses diverse type of lithospheric structure. But our knowledge ahout Chinese continental lithosphere, especially the regional research, is almost based on the low-resolution results of surface wave dispersion analysis and seismic wave tomography. Howere, recently a technique employing S-to-P converted body waves (the S receiver function technique) has been developed that can be used to identify the LAB with a higher resolution. This thesis has collected waveform data of 232 broadband seismic stations that are located in China and neighboring regions. Using teleseismic S-wave and P-wave receiver functions have studied the Chinese continental lithospheric structure. The results of this study indicate that, the thickness of Chinese continental lithosphere become thinner from west to east, and obvious difference exists between different blocks. Four types of lithosphere have been detected: (1) Convergence thicking lithosphere in Tibetan Plateau; (2) Stable lithosphere in Tarim basin and upper Yangtze craton; (4) Active lithosphere in Orogenic belts; (4) Break-up thinning lithosphere in east China craton
Resumo:
Post-collisional, potassic igneous rocks are widely distributed in the Hoh Xil area of the northern Tibetan Plateau. Based on the field work, petrography, mineral chemistry, K-Ar geochronology, element and Sr-Nd-Pb isotope geochemistry, this thesis systematically studied the spatial and temporal distribution of the volcanic rocks, chemical characteristics, formation mechanism and partial melting mechanism of the magma source region, geodynamic setting of magmatism, as well as crustal assimilation and fractional crystallization (AFC). The results show that: 1. The Miocene (7.77-17.82 Ma) volcanic products dominantly are trachandesite and trachy, and subordinate rhyolites, associated with stike-slip faults and thrust faults, formed morphology of small lava platforms and cinder cones. 2. Phenocrysts in the lavas are augite, andesine, sanidine, calcic amphibole and subordinate orthopyroxene, biotite and Ti-Fe oxides, displaying typical quench texture. Equilibrium temperatures and pressures of clinopyroxene phenocrysts indicate the magma chamber is located in upper-middle crust. 3. Rhyolites are the products of crustal melting and fractionation of shoshonitic magmas. The source region of intermediate magmas is enriched continental lithospheric mantle, which contains residual minerals such as phlogopite, rutile and spinel, and enriched by subducted sediments during earlier multi-episodes of subduction. 4. Upwelling of asthenosphere provides heat for source region melting, and faults provide channels for magma eruption. 5. Northward underthrusting of Indian continental lithosphere and southward of backstop of Asian continental lithosphere resulted in upwelling of hot asthenosphere. Geochemical characteristics of the potassic magmatism in North Tibet are dominantly controlled by source region composition, partial melting, and crustal assimilation and fractional crystallization (AFC).
Resumo:
The surface of the Earth is continuously undergoing changes as a result of weathering-erosion, plate tectonics and volcanic processes. Continental weathering-erosion with its complex rock-water interactions is the central process of global biochemical cycling of elements, and affects the long-term ocean atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon. Rates of the weathering-erosion depend on a variety of factors, in particular rock properties and chemical composition, climate (especially rainfall), structure, and elevation. They are quite variable on a regional scale. Thus, environmental changes in a region could be indicated by the history of weathering-erosion in the region. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India-Asia collision zone as a possible cause for falling atmospheric CO_2 levels in the Cenozoic era. The wind blown dust deposits in the Loess Plateau is derived from the arid and semiarid regions in northwestern China, in turn, where the deposits have been derived from the Qinghai-Xizang Plateau and the high mountains around. Therefore, geochemistry of the wind blown loess-paleosol and red clay sequences may provide insight both to paleoenvironmental changes on the Loess Plateau, and to the uplift and weathering-erosion histories of the Qinghai-Xizang Plateau. In this paper, uranium-thorium series nuclides and cosmogenic ~(10)Be have been employed as tracers of weathering intensities and histories of the dust sediments in the Loess Plateau. Major elements, such as Na, Al, Fe etc., are also used to estimate degree of chemical alteration of the dust sediments and to rebuild the history of weathering on the Loess Plateau. First of all, using a low-level HPGe γ-ray detector, we measured U and Th series nuclides in 170 loess and paleosol samples from five sites in the Loess Plateau, going back 2.6 Ma. The results show that ~(238)U activities are disequilibrium with its daughter nuclide ~(230)Th in young loess-paleosol sequence, indicating that weathering was happened both in dust deposition site and in dust source regions. Using concentrations of ~(238)U and ~(232)Th in the samples, we estimated the amounts of ~(238)U leached out of from paleosols due to weathering. Further, based on analyses of ~(230)Th in paleosols deposited in the past ca. 140 ka, we determined when the paleosols weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials before dust deposition.
Resumo:
Based on geodynamic analysis of sedimentary basins, combined sedimentology with structural geology and other methods, the author studied the Honghe basin located in Yunnan province of Southwestern China. Sandstone slice grain size analysis, combined with field geology and indoors study indicate that a set of inland alluvial fan diposits, fluvial deposites, delta deposits and some lacustrine sediments are in Honghe basin. Studying on shape of the Honghe basin, sedimentary and structural characteristic and distribution of different kinds of conglomerate and its structural significance, we hold the idea that the formation and evolution of Honghe basin are controlled by the activity of Red River faut. Correlation of lithostratic cross section in Honghe basin and studying on activity of Red River fault indicate that Honghe basin was formed in two stages. It is a complex basin constitutes of the first-stage trans-releasing basin and the second-stage trans-downfaulted basin. Due to the uplift of Qinghai-Xizang plateau and deformation of orogeny, the western Yunnan and adjacent area move to SE direction as a result of Tectonic Escape. Right lateral strike slip occurred along Red River fault, trans-releasing basin formed at the bend part of the fault due to stress relexation. As the block escaping, it moves away from the other block of the Red River fault, the upper block move down obliquely and trans-downfaulted basin formed. Combined the age of phytolite and regional structural events, we think the first-stage transreleasing basin was formed in late Miocene, on the other words, the dextral strike slip of Red River fault may began in late Miocene (10-7Ma). The second-stage trans-downfaulted basin may be formed in early stage of Pliocene (about 4.7Ma). Subsequently, the bilateral faults dipping to the inside of the plateau and thrusting outwards occurred in the marginal region of Qinghai-Xizang plateau during its uplifting as a fan-shaped mountain body, this results in the uplift of the strata to the east of Red River fault and supply large quantity of provenance for the Honghe basin. In last Pliocene (about 3Ma), strong uplift of Qinghai-Xizang plateau leads to massive clastic sediment entered Honghe basin and causes its closure. As a kind of trans-tentional basin, trans-releasing basin is different to pull-apart basin. The author compared the Mosha trans-releasing basin with Jinggu pull-apart basin in SW Yunan, China, and described their character correspondingly. Otherwise, the author combined the predecessors' studding with conclusion of own study, discussed the kinematics of Ailaoshan-Red River belt in Cenozoic, and the relationship between the formation of Honghe basin and uplifting of Qinghai-Xizang plateau.
Resumo:
In Asia, the significant environment changes in Cenozoic include: uplift of Himalayas and Tibetan Plateau, formation Asian monsoon system, Aridification in Central Asia. One of major advances in recent studies of eolian deposit on the Loess Plateau is the verification of the eolian origin for the Late Tertiary Hipparion Red-Earth (also called red-Clay) underlying the Quaternary loess. Thus, the Late Tertiary eolian deposit, which has been proven a nearly continuous terrestrial record and sensitive to climate change, provides us an important archive to understand these above Cenozoic environment events. The deposit in eastern Loess Plateau has been extensively studied, while the property and age of deposit underlying the Quaternary loess in western plateau remains unclear. In this paper, detail investigations were made on the Sedimentology, geochemistry of Longxi section, a typical section in western Loess Plateau, to address its origin, and on micromammalian fossils and magnetostratigraphy to address its age. The main conclusions are presented as following: 1. The sedimentological and geochemical properties in Longxi section are highly similar to typical Quaternary eolian deposit in Loess Plateau. Nearly 100 paleosols are recognized in the field, and the grain size are very fine with the median grain size centered at 4~7μm. There is a good agreement of both major and trace element compositions between Longxi deposit and the Quaternary Loess. The REE distribution patterns of Longxi deposit and the Quaternary loess are remarkably similar in shape, with enrichment LREE and fairly flat HREE profiles and clear negative Eu anomaly. The mangnetic minerals in Longxi deposit are mainly magnetite, hematite and maghematite, which are similar to those of the Hipparion Red-Earth and Quaternary Loess. The major difference among them is that the samples from Longxi section contain more hematite. The characteristics of anisotropy of magnetic susceptibility (AMS) in Longxi deposit is highly consistent with that of Quaternary loess, while values of the major AMS parameters, e.g. anisotropy degree, magnetic foliation and lineation, are significantly lower than those of fluvial and lake deposits. These evidences indicate an eolian origin for the sediment. 2. An investigation of micromammalian fossils was firstly carried out for determining the approximate age of the sequence because of lack of materials for accurate isotope dating. Three fossil assemblages were obtained which indicate a chronological range from the Middle Miocene to Late Miocene. The magnetostratigraphical study suggests that it is a near continuous terrestrial record for the period from 13.23 to 6.23 MaB.P. The obtained chronology is highly consistent with fossils assemblages. This section is the oldest eolian deposit presently known in Loess Plateau. 3. The magnetic susceptibly value is high in paleosols than in surrounded weak-weathered layers, which suggests that it may be a climate index on orbital time scale. While it cannot be used as a proxy to address the long-term, change of climate on tectonic time scale, as content of the magnetic minerals is highly variable in different parts of the section. 4. The appearance of Middle Miocene eolian deposit in the Loess Plateau marks the strengthening of aridification of Central Asia. The high degree of similarity between the geochemical properties of Longxi eolian deposit, Hipparion Red-Earth and Quaternary loess a suggests that a rather similar source provenance. The dust accumulation rate (DAR) of Longxi section, which is widely used as a proxy to document the aridity in source areas in marine and terrestrial record studies, recorded the aridity condition in northwestern China over a period from Middle Miocene to Late Miocene. The DAR of the section shows that the continent aridity remains moderate and relative stable over that period.
Resumo:
Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture.
Resumo:
A number of proxy records of paleoenvironment using stable isotopes could show the history of past environmental changes. These archives include peat and lake sediments, loess-paleosot sequence, fossil mammals and stalagmite, and so on. The stable isotopic composition of carbonate and organic matter and frequency magnetic susceptibility from Tianshuigou and Yuanlei loess-palesol sequence can be used to give estimates of the paleoenvironmental history of Dali, and even of the whole Chinese Loess Plateau during the last 250ka. Features of the High Temperature and Large Precipitation Event in the Tibet Plateau and its adjacent area during 40~30kaBP had been studied by Professor Shi Y. In this dissertation, its impact on Chinese Loess Plateau has been discussed again. Carbon and oxygen isotopic ratios, magnetic susceptibility and frequency magnetic susceptibility in Tianshuigou and Yuanlei profiles show that the Event in this area is not so stronger as the Tibet Plateau. The carbon isotopic composition of organic matter in Tianshuigou, Yuanlei, dingcun and Jingcun loess-palesol sequences are indicative of major changes in the paleovagetation between terrace and plain of the Chinese Loess Plateau. Water is one of the most important factors adjusting the relative biomass of C4 plant in terrestrial ecosystems. Stable carbon isotope ratio of vertebrate tooth enamel is used increasingly to reconstruct environmental and ecological information modern and ancient ecosystems. The SI3C value of tooth enamel bioapatites can distinguish between browsers and grazers. Data from typical grassland of Inter Mongolia, the Alpine meadow of Qinghai-Tibet Plateau and the Yaluzangbu Great Canyon indicate that diets of mammals could record the relative biomass of C4 plant only in the C4 dominated ecosystem. In a C3 dominated ecosystem, diet of mammals would include more C3 plants than vegetation. According to Professor Cerling, proxy records from North and South America, Africa and Pakistan show that at the end of the Miocene (between 8Ma to 6 Ma) there was a global expansion of CA biomass, probably when atmospheric CO2 levels declined. Thus, "C4 world" and "CO2 starvation" are put forward. In this dissertation, carbon isotopes of fossil tooth such as Equus sanmeniensis and Hipparion chiai from Linxia, China reveal that there is a C3 dominated ecosystem in the late Miocene. Diets of ancient mammals in Linxia are not evidence of global expansion of C4 biomass.
Resumo:
In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.
Resumo:
Analysis of periodic oscillations of climate is very important in understanding the behavior of the climate system. Milankovitch hypothesis, which holds that the glacial-interglacial climatic cycles during the Quaternary were primarily driven by variations in orbital parameters, has been supported by substantial geological evidence. Continuous long-term and high-resolution records are crucial to detect how variations of Earth's orbital parameters affected climate before the Quaternary when the boundary conditions were significantly different. Qinan loess formed in the Miocene is nearly continuous aeolian deposit in northern China. Previous study has established a constrained chronology, which provides a basis to examine long-term climatic variations. One of important issues to untangle the mechanisms behind major climate changes is the investigation of climate cycles recorded in Qinan loess. In this paper, two climatic proxies, magnetic susceptibility and redness, are analyzed for QA-I section to evaluate climate cycles using Maximum entropy spectral analysis and Blackman-Tuckey method. Main conclusions are presented as following: Results exhibit significant peaks at periods of 100 ka, 64 ka, 41 ka, 30 ka and 23 ka, but also 1000 ka, 600 ka and 400 ka. These peaks correspond to the dominant periods of the Earth's orbit parameters, which indicates that the formation of the aeolian sediment in northern China might be primarily driven by variations in orbital parameters. Fluctuations with different cycles respectively dominated in different periods. Major shifts in the dominant cycles occurred at 20.3, 19.0, 17.9, 15.2, 12.5 and 11.3 Myr ago. The transition that happened at 17.9 Myr ago was synchronous with the uplift of the Tibetan Plateau, while others at 15.2, 12.5 and 11.3 Myr ago were in good agreement with the timing of the development of Antarctic ice sheet. Therefore we inferred that these shifts might be related to changes in global ice volume and/or the Tibetan uplift. 3. The strong period of 100 ka is observed between 17.9 and 15.2, and 12.5 and 11.3 Myr ago. Ice sheet-climate models that have been used to explain the cause of the 100 ka period since the middle Pleistocene couldn't be responsible for driving the 100 ka climate cycle in the Miocene in Northern China because of the different boundary of climatic conditions between the Quaternary and Miocene. Further investigation is needed to understand how this cycle became dominant in Qinan loess records during these two time segments.
Resumo:
Three eolian deposit formations, including Quaternary loess (QL, Liu et al.3 1985), Hipparion red earth (HRE, also called red clay, Liu et al., 1985) and Miocene loess (ML, Guo et al., 2002) constitute a set of unique paleoclimatic archives in northern China dated back to at least 22Ma ago. The Miocene loess is a recently discovered loess-soil sequence. Detailed investigation has been made on its origin, chronology and paleoclimatic significance (Guo et al., 2002), but further work is still needed to obtain detailed paleoclimate information, and mechanical links behind paleoclimatic changes. In this study, grain size analysis of QL, HRE and ML has been conducted on two sections: Qinan and Xifeng. The objective is focused on comparison of the grain size distribution characteristics (GSDC) among different eolian deposit formations, and reconstruction of the Asian monsoon circulation in the past 22 Ma. Results show that GDSC of ML resembles that of QL and HRE, and GDSC of ML is especially similar to HRE. Both ML and HRE contain a significant proportion of fine fraction, however, QL has a large amount of coarse sediments. This is mainly due to that the wind system transported aeolian dust was weaker in the late Tertiary than that in the Quaternary. Grain size difference between loess and paleosol in ML is much smaller than that in QL, indicating that the climatic fluctuations during the late Tertiary were much smaller than that happened in the Quaternary The grain size records of the past 22 Ma reveal several evolution phases of the Asia winter monsoon. -2.7 Ma BP is the most important boundary in the process of the winter monsoon evolution: the wind strength have significantly enhanced since 2.7 Ma ago. During a period between -22.0 and -3.6 Ma, three periods with relatively stronger winter monsoon are recorded in the QA-I section, between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 to 6.9 Ma, respectively. From 3.6 to 2.7, the winter monsoon was enhanced gradually. In the Miocene time, the intensified winter monsoon phases (between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 and 6.9 Ma) seemed to have a close relationship with the uplift of the Tibetan Plateau and/or the ongoing global cooling, but the forcing mechanism behind the Asia winter monsoon evolution need to be further investigated. During the Pliocene-Pleistocene time, the Asia winter monsoon strengthened at 3.6 and 2.7Ma ago are in good agreement with the ongoing global cooling and the Arctic ice sheet development. In the mean time, much evidence suggests that an intense uplift of the Tibetan Plateau occurred at ~3.6 Ma, which is synchronous with a major increase in Asia winter monsoon. Therefore, two major factors may be invoked to explain the winter monsoon enhancement: Arctic ice sheet development and Tibetan uplift. We propose that changes in location and intensity of the Siberian-Mongolian high that were caused by the Tibetan uplift and Arctic ice sheet development might be an important factor for Asian winter monsoon evolution in the Pliocene-Pleistocene.