982 resultados para Probability Distribution
Resumo:
We introduce a five-parameter continuous model, called the McDonald inverted beta distribution, to extend the two-parameter inverted beta distribution and provide new four- and three-parameter sub-models. We give a mathematical treatment of the new distribution including expansions for the density function, moments, generating and quantile functions, mean deviations, entropy and reliability. The model parameters are estimated by maximum likelihood and the observed information matrix is derived. An application of the new model to real data shows that it can give consistently a better fit than other important lifetime models. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
For any continuous baseline G distribution [G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883-898], proposed a new generalized distribution (denoted here with the prefix 'Kw-G'(Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-Gdensity function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155-161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279-285] and Kw-Flexible Weibull [M. Bebbington, C. D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719-726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Renyi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.
Resumo:
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Smear-negative pulmonary tuberculosis (SNPTB) accounts for 30% of Pulmonary Tuberculosis (PTB) cases reported annually in developing nations. Polymerase chain reaction (PCR) may provide an alternative for the rapid detection of Mycobacterium tuberculosis (MTB); however little data are available regarding the clinical utility of PCR in SNPTB, in a setting with a high burden of TB/HIV co-infection. Methods To evaluate the performance of the PCR dot-blot in parallel with pretest probability (Clinical Suspicion) in patients suspected of having SNPTB, a prospective study of 213 individuals with clinical and radiological suspicion of SNPTB was carried out from May 2003 to May 2004, in a TB/HIV reference hospital. Respiratory specialists estimated the pretest probability of active disease into high, intermediate, low categories. Expectorated sputum was examined by direct microscopy (Ziehl-Neelsen staining), culture (Lowenstein Jensen) and PCR dot-blot. Gold standard was based on culture positivity combined with the clinical definition of PTB. Results In smear-negative and HIV subjects, active PTB was diagnosed in 28.4% (43/151) and 42.2% (19/45), respectively. In the high, intermediate and low pretest probability categories active PTB was diagnosed in 67.4% (31/46), 24% (6/25), 7.5% (6/80), respectively. PCR had sensitivity of 65% (CI 95%: 50%–78%) and specificity of 83% (CI 95%: 75%–89%). There was no difference in the sensitivity of PCR in relation to HIV status. PCR sensitivity and specificity among non-previously TB treated and those treated in the past were, respectively: 69%, 43%, 85% and 80%. The high pretest probability, when used as a diagnostic test, had sensitivity of 72% (CI 95%:57%–84%) and specificity of 86% (CI 95%:78%–92%). Using the PCR dot-blot in parallel with high pretest probability as a diagnostic test, sensitivity, specificity, positive and negative predictive values were: 90%, 71%, 75%, and 88%, respectively. Among non-previously TB treated and HIV subjects, this approach had sensitivity, specificity, positive and negative predictive values of 91%, 79%, 81%, 90%, and 90%, 65%, 72%, 88%, respectively. Conclusion PCR dot-blot associated with a high clinical suspicion may provide an important contribution to the diagnosis of SNPTB mainly in patients that have not been previously treated attended at a TB/HIV reference hospital.
Resumo:
In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.
Resumo:
The generalized failure rate of a continuous random variable has demonstrable importance in operations management. If the valuation distribution of a product has an increasing generalized failure rate (that is, the distribution is IGFR), then the associated revenue function is unimodal, and when the generalized failure rate is strictly increasing, the global maximum is uniquely specified. The assumption that the distribution is IGFR is thus useful and frequently held in recent pricing, revenue, and supply chain management literature. This note contributes to the IGFR literature in several ways. First, it investigates the prevalence of the IGFR property for the left and right truncations of valuation distributions. Second, we extend the IGFR notion to discrete distributions and contrast it with the continuous distribution case. The note also addresses two errors in the previous IGFR literature. Finally, for future reference, we analyze all common (continuous and discrete) distributions for the prevalence of the IGFR property, and derive and tabulate their generalized failure rates.
On the multivariate Huesler-Reiss distribution attracting the maxima of elliptical triangular arrays
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.
Resumo:
We describe several simulation algorithms that yield random probability distributions with given values of risk measures. In case of vanilla risk measures, the algorithms involve combining and transforming random cumulative distribution functions or random Lorenz curves obtained by simulating rather general random probability distributions on the unit interval. A new algorithm based on the simulation of a weighted barycentres array is suggested to generate random probability distributions with a given value of the spectral risk measure.
Resumo:
A characterization is provided for the von Mises–Fisher random variable, in terms of first exit point from the unit hypersphere of the drifted Wiener process. Laplace transform formulae for the first exit time from the unit hypersphere of the drifted Wiener process are provided. Post representations in terms of Bell polynomials are provided for the densities of the first exit times from the circle and from the sphere.
Resumo:
Let {μ(i)t}t≥0 ( i=1,2 ) be continuous convolution semigroups (c.c.s.) of probability measures on Aff(1) (the affine group on the real line). Suppose that μ(1)1=μ(2)1 . Assume furthermore that {μ(1)t}t≥0 is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then μ(1)t=μ(2)t for all t≥0 . We end up with a possible application in mathematical finance.