927 resultados para Probabilistic choice models
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
There has been an abundance of literature on the modelling of hydrocyclones over the past 30 years. However, in the comminution area at least, the more popular commercially available packages (e.g. JKSimMet, Limn, MODSIM) use the models developed by Nageswararao and Plitt in the 1970s, either as published at that time, or with minor modification. With the benefit of 30 years of hindsight, this paper discusses the assumptions and approximations used in developing these models. Differences in model structure and the choice of dependent and independent variables are also considered. Redundancies are highlighted and an assessment made of the general applicability of each of the models, their limitations and the sources of error in their model predictions. This paper provides the latest version of the Nageswararao model based on the above analysis, in a form that can readily be implemented in any suitable programming language, or within a spreadsheet. The Plitt model is also presented in similar form. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives-defined as a choice that makes preferred consequences more likely-requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the relevance of new information, relative to the initial ( and smaller) set of data on which the decision was based. We exemplify this seemingly simple situation using risk management of BSE. As an integral aspect of causal analysis under risk, the methods developed in this paper permit the addition of non-linear, hormetic dose-response models to the current set of regulatory defaults such as the linear, non-threshold models. This increase in the number of defaults is an important improvement because most of the variants of the precautionary principle require cost-benefit balancing. Specifically, increasing the set of causal defaults accounts for beneficial effects at very low doses. We also show and conclude that quantitative risk assessment dominates qualitative risk assessment, supporting the extension of the set of default causal models.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann (J. Phys. Chem. B 1998,102, 25692577) for ethane and Wick et al. (J. Phys. Chem. B 2000,104, 8008-8016) for ethylene and (ii) AUA4-LJ model of Ungerer et al. (J. Chem. Phys. 2000,112, 5499-5510) for ethane and Bourasseau et al. (J. Chem. Phys. 2003, 118, 3020-3034) for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
The present study addresses the problem of predicting the properties of multicomponent systems from those of corresponding binary systems. Two types of multicomponent polynomial models have been analysed. A probabilistic interpretation of the parameters of the Polynomial model, which explicitly relates them with the Gibbs free energies of the generalised quasichemical reactions, is proposed. The presented treatment provides a theoretical justification for such parameters. A methodology of estimating the ternary interaction parameter from the binary ones is presented. The methodology provides a way in which the power series multicomponent models, where no projection is required, could be incorporated into the Calphad approach.
Resumo:
The Access to Allied Psychological Services component of Australia's Better Outcomes in Mental Health Care program enables eligible general practitioners to refer consumers to allied health professionals for affordable, evidence-based mental health care, via 108 projects conducted by Divisions of General Practice. The current study profiled the models of service delivery across these projects, and examined whether particular models were associated with differential levels of access to services. We found: 76% of projects were retaining their allied health professionals under contract, 28% via direct employment, and 7% some other way; Allied health professionals were providing services from GPs' rooms in 63% of projects, from their own rooms in 63%, from a third location in 42%; and The referral mechanism of choice was direct referral in 51% of projects, a voucher system in 27%, a brokerage system in 24%, and a register system in 25%. Many of these models were being used in combination. No model was predictive of differential levels of access, suggesting that the approach of adapting models to the local context is proving successful.
Resumo:
We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite-element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yielding) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.
Resumo:
This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
This paper presents a novel methodology to infer parameters of probabilistic models whose output noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in parameters to nonlinear multi-layer perceptrons (MLPs). We used an EM algorithm combined with variational approximation, the evidence procedure, and an optimisation algorithm. The technique was tested on two regression applications. The first one is a synthetic dataset and the second is gas forward contract prices data from the UK energy market. The results showed that forecasting accuracy is significantly improved by using Student-t noise models.