914 resultados para Print waste


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the effects of industrial solid waste (whitewash mud) on geotechnical properties considering the following engineering parameters: California Bearing Ratio (CBR), Atterberg limits and Permeability test. Seven soil samples derived from Alagoinhas, Bahia - Brazil, were classified by the Transportation Research Board (TRB) system. Two were selected as having a great geotecnical potential classified as A-3 (0) and A-2-4 (0), whitewash mud contents 10%, 15%, 20% and 25% dry weight and medium compaction effort were studied in the laboratory testing program. The results indicated the soil denominated good gravel as being the most promising one, when stabilized with whitewash mud, reaching the best results with the dosage of 20 and 25% of whitewash mud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The update of the Finnish legislation concerning waste was unavoidable, to comply with the European Union (EU) requirements defined in the EU-Directive on Waste. The new waste law updates were enacted into the Finnish legislation on the 11.03.2011 and targeted for applicability by the 11.03.2012. This thesis investigates the implications of the new amendments to the waste legislation from the perspective of green sand foundries. The investigations are conducted by comparing two of Componenta’s green sand foundries and evaluating their waste streams. Additionally, the impacts of legislation amendments are critiqued on their environmental and economic aspects. The study’s comparison of waste fractions at the two foundries reveals that sand is dominant in absolute tonnage and costs. The increments of waste taxes forces foundries to focus on waste management, recycling and disposing. The new legislation’s promotion of material efficiency, also guides foundries towards the prevention of waste. A potential preventive measure is to regenerate waste sand resulting to cost savings on both raw-materials and waste management. However, the lack of absolute targets for waste prevention or recycling rates discourages the interests towards creating or adopting new technologies and methods for the waste handling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The possibility to vary the energy matrix, thus reducing the dependency on fossil fuels, has amplified the acceptance of biomass as an alternative fuel. Despite being a cheap and renewable option and the fact that Brazil is a major producer of waste from agriculture and forestry activities, the use of these materials has barriers due to its low density and low energetic efficiency, which can raise the costs of its utilization. Biomass densification has drawn attention due to its advantage in comparison to in natura biomass due to its better physical and combustion characteristics. The objective of this paper is to evaluate the impact of biomass densification in distribution and transport costs. To reach this objective, a mathematical model was used to represent decisions at a supply chain that coordinates the purchase and sale of forestry and wood waste. The model can evaluate the options to deliver biomass through the supply chain combining demand meeting and low cost. Results point to the possibility of an economy of 60% in transport cost and a reduction of 63% in the required quantity of trucks when densified waste is used. However, costs related to the densifying process lead to an increase of total supply costs of at least 37,8% in comparison to in natura waste. Summing up, the viability of biomass briquettes industry requires a cheaper densification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tillgången på traditionella biobränslen är begränsad och därför behöver man ta fram nya, tidigare outnyttjade biobränslen för att möta de uppställda CO2 emissionsmålen av EU och det ständigt ökande energibehovet. Under de senare åren har intresset riktats mot termisk energiutvinning ur olika restfraktioner och avfall. Vid produktion av fordonsbränsle ur biomassa är den fasta restprodukten ofta den största procesströmmen i produktionsanläggningen. En riktig hantering av restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar. Ett alternativ är att genom förbränning producera elektricitet och/eller värme eftersom dessa restprodukter anses som CO2-neutrala. Målsättningen med den här avhandlingen var att studera förbränningsegenskaperna hos några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. Med hjälp av detaljerad bränslekarakterisering kunde restprodukterna konstateras vara en värdefull källa för värme- och elproduktion. Den kemiska sammansättningen av restprodukterna varierar stort jämfört med mera traditionellt använda biobränslen. En gemensam faktor för alla de studerade restprodukterna är en hög fosforhalt. På grund av de låga fosforkoncentrationerna i de traditionella biobränslena har grundämnet hittills inte ansetts spela någon större roll i askkemin. Experimenten visade nu att fosfor inte mera kan försummas då man studerar kemin i förbränningsprocesser, då allt flera fosforrika bränslen tränger in på energimarknaden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, was studied the biogas generation from swine manure, using residual glycerine supplementation. The biogas production by digestion occurred in the anaerobic batch system under mesophilic conditions (35°C), with a hydraulic retention time of 48 days. The experiment was performed with 48 samples divided into four groups, from these, one was kept as a control (without glycerin) and the other three groups were respectively supplemented with residual glycerine in the percentage of 3%, 6% and 9% of the total volume of the samples. The volume of biogas was controlled by an automated system for reading in laboratory scale and the quality of the biogas (CH4) measured from a specific sensor. The results showed that the residual glycerine has high potential for biogas production, with increases of 124.95%, 156.98% and 197.83% in the groups 3%, 6% and 9%, respectively, relative to the sample control. However, very high organic loads can compromise the process of digestion affecting the quality of the biogas generated in relation to methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to evaluate the use of sugarcane industry waste such as byproducts from vinasse concentration process, it was assessed the organomineral fertilizer BIOFOM (concentrated vinasse, filter cake, boiler ash, soot from chimneys and supplemented with mineral fertilizers). The study included characterization and agronomic potential analysis of a test plant (corn), by noting the differences between mineral fertilizers and BIOFOM fertilization until 45 days after sowing. The technology traditionally used to produce BIOFOM was based on vinasse evaporation with high heat transfer coefficients. It was observed that the technology, which can be formulated according to the needs of any crop, could be used in many cases as mineral fertilizer. Therefore, the use of this organomineral fertilizer reduces waste generation of sugarcane industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine litter is an international environmental problem that causes considerable costs to coastal communities and the fishing industry. Several international and national treaties and regulations have provisions to marine litter and forbid disposal of waste into the sea. However, none of these regulations state a responsibility for public authorities to recover marine litter from the sea, like they do for marine litter that washes up on public beaches. In a financial evaluation of a value chain for marine litter incineration it was found out that the total costs of waste incineration are approximately 100 ─ 200 % higher than waste fees offered by waste contractors of ports. The high costs of incineration are derived from the high calorific value of marine litter and therefore a high incineration cost for the waste, and long distances between ports that are taking part in a project for marine litter recovery from the sea and an Energy-from-Waste (EfW) facility. This study provides a possible solution to diverting marine litter from landfills to more environmentally sustainable EfW use by using a public-private partnership (PPP) framework. PPP would seem to fit as a suitable cooperative approach for answering problems of current marine litter disposal in theory. In the end it is up to the potential partners of this proposed PPP to decide whether the benefits of cooperation justify the required efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogas production has considerable development possibilities not only in Finland but all over the world since it is the easiest way of creating value out of various waste fractions and represents an alternative source of renewable energy. Development of efficient biogas upgrading technology has become an important issue since it improves the quality of biogas and for example facilitating its injection into the natural gas pipelines. Moreover, such upgrading contributes to resolving the issue of increasing CO2 emissions and addresses the increasing climate change concerns. Together with traditional CO2 capturing technologies a new class of recently emerged sorbents such as ionic liquids is claimed as promising media for gas separations. In this thesis, an extensive comparison of the performance of different solvents in terms of CO2 capture has been performed. The focus of the present study was on aqueous amine solutions and their mixtures, traditional ionic liquids, ‘switchable’ ionic liquids and poly(ionic liquid)s in order to reveal the best option for biogas upgrading. The CO2 capturing efficiency for the most promising solvents achieved values around 50 - 60 L CO2 / L absorbent. These values are superior to currently widely applied water wash biogas upgrading system. Regeneration of the solvent mixtures appeared to be challenging since the loss of initial efficiency upon CO2 release was in excess of 20 - 40 vol %, especially in the case of aqueous amine solutions. In contrast, some of the ionic liquids displayed reversible behavior. Thus, for selected “switchable” ionic and poly(ionic liquid)s the CO2 absorption/regeneration cycles were performed 3 - 4 times without any notable efficiency decrease. The viscosity issue, typical for ionic liquids upon CO2 saturation, was addressed and the information obtained was evaluated and related to the ionic interactions. The occurrence of volatile organic compounds (VOCs) before and after biogas upgrading was studied for biogas produced through anaerobic digestion of waste waters sludge. The ionic liquid [C4mim][OAc] demonstrated its feasibility as a promising scrubbing media and exhibited high efficiency in terms of the removal of VOCs. Upon application of this ionic liquid, the amount of identified VOCs was diminished by around 65 wt %, while the samples treated with the aqueous mixture of 15 wt % N-methyldiethanolamine with addition of 5 wt % piperazine resulted in 32 wt % reduction in the amounts of volatile organic compounds only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the epidemiologic data of the death of pigs during the period of 2002 to 2009 following the ingestion of botulinum neurotoxin type C. This neurotoxin was present in food residues originating from restaurant and hotel kitchens, stored in barrels without shelter from the sun and administered in a collective trough without prior thermal treatment. Animals which died at different ages showed clinical signs of botulism characterized by flaccid paralysis, weight loss, anorexia, weakness, lack of coordination, locomotion difficulties with the evolution of lateral recumbency with involuntary urination and defecation. No alterations were observed at postmortem and histological examination. The bioassay with serum neutralization in mice was carried out on samples of intestinal contents from pigs affected and revealed the presence of large quantities of botulinum toxin type C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste incineration plants are increasingly established in China. A low heating value and high moisture content, due to a large proportion of biowaste in the municipal solid waste (MSW), can be regarded as typical characteristics of Chinese MSW. Two incineration technologies have been mainly established in China: stoker grate and circular fluidized bed (CFB). Both of them are designed to incinerate mixed MSW. However, there have been difficulties to reach the sufficient temperature in the combustion process due to the low heating value of the MSW. That is contributed to the usage of an auxiliary fossil fuel, which is often used during the whole incineration process. The objective of this study was to design alternative Waste-to-energy (WTE) scenarios for existing WTE plants with the aim to improve the material and energy efficiency as well as the feasibility of the plants. Moreover, the aim of this thesis was to find the key factors that affect to the feasibility of the scenarios. Five different WTE plants were selected as study targets. The necessary data for calculation was gained from literature as well as received from the operators of the target WTE plants. The created scenarios were based on mechanical-biological treatment (MBT) technologies, in which the produced solid recovered fuel (SRF) was fed as an auxiliary fuel into a WTE plant replacing the fossil fuel. The mechanically separated biowaste was treated either in an anaerobic digestion (AD) plant, a biodrying plant, a thermal drying plant, or a combined AD plant + thermal drying plant. An interactive excel spreadsheet based computation tool was designed to estimate the viability of the scenarios in different WTE cases. The key figures of the improved material and energy efficiency, such as additional electricity generated and avoided waste for landfill, were got as results. Furthermore, economic indicators such as annual profits (or costs), payback period, and internal rate of return (IRR) were gained as results. The results show that the AD scenario was the most profitable in most of the cases. The current heating value of MSW and the tipping fee for the received MSW appeared as the most important factor in terms of feasibility.