907 resultados para Precursor Ribosomal-rna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation and seems to inhibit translation in vitro. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mature 3' ends of histone mRNAs are formed by endonucleolytic cleavage of longer precursor transcripts. This process occurs in the nucleus and can be regarded as the equivalent of the polyadenylation reaction involved in 3′-end-generation of all other mRNAs. A sea urchin H3 gene that failed to be properly processed in the Xenopus oocyte system proved particularly useful, because it allowed the identification of a processing component from sea urchins by a complementation assay. Nuclear extracts prepared from cells under various growth conditions have helped to reveal proliferation-dependent changes in the efficiency of histone RNA 3′ processing. RNA substrates for in vitro processing are best prepared by runoff transcription of specific DNA templates with bacterial or phage RNA polymerases. For this purpose, a restriction fragment containing the 3′-terminal region of a histone gene and including the conserved palindrome and spacer motifs is cloned into a polylinker sequence downstream of a strong promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the human genome has revealed that more than 74% of human genes undergo alternative RNA splicing. Aberrations in alternative RNA splicing have been associated with several human disorders, including cancer. ^ We studied the aberrant expression of alternative RNA splicing isoforms of the Fibroblast Growth Factor Receptor 1 (FGFR1) gene in a human glioblastoma cancer model. Normal glial cells express the FGFR1α, which contains three extracellular domains. In tumors the most abundant isoform is the FGFR1β, which lacks the first extracellular domain due to the skipping of a single exon, termed alpha. The skipping of the α-exon is regulated by two intronic silencing sequences within the precursor mRNA. Since we observed no mutations on these elements in tumor cells, we hypothesized that the over-expression of regulatory proteins that recognize these sequences is responsible for the aberrant expression of splicing isoforms. Hence, we blocked the formation of protein complexes on the ISS using antisense RNA oligonucleotides in vitro. We also evaluated the impact of the ISS antisense oligonucleotides on the endogenous FGFR1 splicing, in a glioblastoma cell model. By targeting intronic regulatory elements we were able to increase the level of alpha exon inclusion up to 90% in glioblastoma cells. The effect was dose dependent, sequence specific and reproducible in glioblastoma and other cancer cells, which also exhibit an alpha exon skipping phenotype. Targeting FGFR1 endogenous ISS1 and ISS2 sequences did not have an additive or synergistic effect, which suggest a regulatory splicing mechanism that requires the interaction of complexes formed on these elements. An increase in the levels of the FGFR1α isoform resulted in a reduction in cell invasiveness. Also, a significant increase in the levels of caspase 3/7 activities, which is indicative of an elevation in apoptosis levels, suggests that expression of FGFR1β might be relevant for tumor survival. These studies demonstrate that it is possible to prevent aberrant expression of exon skipping events through the targeting of intronic regulatory elements, providing an important new therapeutic tool for the correction of human disease caused by alternative RNA splicing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RPP2, an essential gene that encodes a 15.8-kDa protein subunit of nuclear RNase P, has been identified in the genome of Saccharomyces cerevisiae. Rpp2 was detected by sequence similarity with a human protein, Rpp20, which copurifies with human RNase P. Epitope-tagged Rpp2 can be found in association with both RNase P and RNase mitochondrial RNA processing in immunoprecipitates from crude extracts of cells. Depletion of Rpp2 protein in vivo causes accumulation of precursor tRNAs with unprocessed introns and 5′ and 3′ termini, and leads to defects in the processing of the 35S precursor rRNA. Rpp2-depleted cells are defective in processing of the 5.8S rRNA. Rpp2 immunoprecipitates cleave both yeast precursor tRNAs and precursor rRNAs accurately at the expected sites and contain the Rpp1 protein orthologue of the human scleroderma autoimmune antigen, Rpp30. These results demonstrate that Rpp2 is a protein subunit of nuclear RNase P that is functionally conserved in eukaryotes from yeast to humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During recent studies of ribonucleolytic “degradosome” complexes of Escherichia coli, we found that degradosomes contain certain RNAs as well as RNase E and other protein components. One of these RNAs is ssrA (for small stable RNA) RNA (also known as tm RNA or 10Sa RNA), which functions as both a tRNA and mRNA to tag the C-terminal ends of truncated proteins with a short peptide and target them for degradation. Here, we show that mature 363-nt ssrA RNA is generated by RNase E cleavage at the CCA-3′ terminus of a 457-nt ssrA RNA precursor and that interference with this cleavage in vivo leads to accumulation of the precursor and blockage of SsrA-mediated proteolysis. These results demonstrate that RNase E is required to produce mature ssrA RNA and for normal ssrA RNA peptide-tagging activity. Our findings indicate that RNase E, an enzyme already known to have a central role in RNA processing and decay in E. coli, also has the previously unsuspected ability to affect protein degradation through its role in maturation of the 3′ end of ssrA RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytosulfokine-α [PSK-α, Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln], a sulfated mitogenic peptide found in plants, strongly promotes proliferation of plant cells in culture at very low concentrations. Oryza sativa PSK (OsPSK) cDNA encoding a PSK-α precursor has been isolated. The cDNA is 725 base pairs long, and the 89-aa product, preprophytosulfokine, has a 22-aa hydrophobic region that resembles a cleavable leader peptide at its NH2 terminus. The PSK-α sequence occurs only once within the precursor, close to the COOH terminus. [Ser4]PSK-α was secreted by transgenic rice Oc cells harboring a mutated OsPSK cDNA, suggesting proteolytic processing from the larger precursor, a feature commonly found in animal systems. Whereas PSK-α in conditioned medium with sense transgenic Oc cells was 1.6 times as concentrated as in the control case, antisense transgenic Oc cells produced less than 60% of the control level. Preprophytosulfokine mRNA was detected at an elevated constitutive level in rice Oc culture cells on RNA blot analysis. Although PSK-α molecules have never been identified in any intact plant, reverse transcription–PCR analysis demonstrated that OsPSK is expressed in rice seedlings, indicating that PSK-α may be important for plant cell proliferation both in vitro and in vivo. DNA blot analysis demonstrated that OsPSK homologs may occur in dicot as well as monocot plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA–protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.