930 resultados para Power transmission planning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate buses has been defined, the program gives the location and size of the reactive sources needed(if any) in keeping with operating and security constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a new methodology based on risk/investment to solve transmission network expansion planning (TNEP) problem with multiple future scenarios. Three mathematical models related to TNEP problems considering multiple future generation and load scenarios are also presented. These models will provide planners with a meaningful risk assessment that enable them to determine the necessary funding for transmission lines at a permissible risk level. The results using test and real systems show that the proposed method presents better solutions compared with scenario analysis method. ©The Institution of Engineering and Technology 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modal analysis is widely approached in the classic theory of power systems modelling. This technique is also applied to model multiconductor transmission lines and their self and mutual electrical parameters. However, this methodology has some particularities and inaccuracies for specific applications, which are not clearly described in the technical literature. This study provides a brief review on modal decoupling applied in transmission line digital models and thereafter a novel and simplified computational routine is proposed to overcome the possible errors embedded by the modal decoupling in the simulation/ modelling computational algorithm. © The Institution of Engineering and Technology 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the optimal reactive power planning problem under risk is presented. The classical mixed-integer nonlinear model for reactive power planning is expanded into two stage stochastic model considering risk. This new model considers uncertainty on the demand load. The risk is quantified by a factor introduced into the objective function and is identified as the variance of the random variables. Finally numerical results illustrate the performance of the proposed model, that is applied to IEEE 30-bus test system to determine optimal amount and location for reactive power expansion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)