873 resultados para Plastic debris
Resumo:
Photocatalytic antibacterial low density polyethylene (LDPE)–TiO2 films are produced by an extrusion method and tested for photocatalytic oxidation activity, via the degradation of methylene blue (MB) and photocatalytic antibacterial activity, via the destruction of Escherichia coli. The MB test showed that extruded LDPE films with a TiO2 loading 30 wt.% were of optimum activity with no obvious decrease in film strength, although the activity was less than that exhibited by the commercial self-cleaning glass, Activ®. UVC pre-treatment (9.4 mW cm−2) of the latter film improved its activity, with the level of surface sites available for MB adsorption increasing linearly with UVC dose. Although the MB test revealed an optimum exposure time of ca. 60 min photocatalytic oxidation activity, only 30 min was used in the photocatalytic antibacterial tests in order to combine minimal reduction in film integrity with maximum film photocatalytic activity. The photocatalytic antibacterial activity of the latter film was over 10 times that of a non-UVC treated 30 wt.% TiO2 film, which, in turn was over 100 times more active than Activ®.
Resumo:
The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.
Resumo:
An adhesive elasto-plastic contact model for the discrete element method with three dimensional non-spherical particles is proposed and investigated to achieve quantitative prediction of cohesive powder flowability. Simulations have been performed for uniaxial consolidation followed by unconfined compression to failure using this model. The model has been shown to be capable of predicting the experimental flow function (unconfined compressive strength vs. the prior consolidation stress) for a limestone powder which has been selected as a reference solid in the Europe wide PARDEM research network. Contact plasticity in the model is shown to affect the flowability significantly and is thus essential for producing satisfactory computations of the behaviour of a cohesive granular material. The model predicts a linear relationship between a normalized unconfined compressive strength and the product of coordination number and solid fraction. This linear relationship is in line with the Rumpf model for the tensile strength of particulate agglomerate. Even when the contact adhesion is forced to remain constant, the increasing unconfined strength arising from stress consolidation is still predicted, which has its origin in the contact plasticity leading to microstructural evolution of the coordination number. The filled porosity is predicted to increase as the contact adhesion increases. Under confined compression, the porosity reduces more gradually for the load-dependent adhesion compared to constant adhesion. It was found that the contribution of adhesive force to the limiting friction has a significant effect on the bulk unconfined strength. The results provide new insights and propose a micromechanical based measure for characterising the strength and flowability of cohesive granular materials.
Resumo:
Molecular dynamics (MD) simulation was carried out to acquire an in-depth understanding of the flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. The key findings were that (i) the substrate material underneath the cutting tool was observed for the first time to experience a rotational flow akin to fluids at all the tested temperatures up to 1200 K. (ii) The degree of flow in terms of vorticity was found higher on the (1 1 1) crystal plane signifying better machinability on this orientation in accord with the current pool of knowledge (iii) an increase in the machining temperature reduces the springback effect and thereby the elastic recovery and (iv) the cutting orientation and the cutting temperature showed significant dependence on the location of the stagnation region in the cutting zone of the substrate.
Resumo:
Highly-sensitive optical fluorescent extruded plastic films are reported for the detection of gaseous and dissolved CO2. The pH-sensitive fluorescent dye used is 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS, PTS-) coated on the surface of hydrophilic fumed silica and the base is tetrabutylammonium hydroxide (TBAH). The above components are used to create an HPTS pigment (i.e. HPTS/SiO2/TBAH) with a high CO2 sensitivity (%CO2(S=1/2) = 0.16%) and fast 50% response (t50↓) = 2 s and recovery (t50↑) = 5 s times. Highly CO2-sensitive plastic films are then fabricated, via the extrusion of the HPTS pigment powder in low-density polyethylene (LDPE). As with the HPTS-pigment, the luminescence intensity (at 515 nm) and absorbance (at 475 nm) of the HPTS plastic film decreases as the %CO2 in the ambient gas phase increases. The HPTS plastic film exhibits a high CO2 sensitivity, %CO2(S=1/2), of 0.29%, but a response time ˂2 min and recovery time ˂40 min, which is slower than that of the HPTS pigment. The HPTS plastic film is very stable under ambient conditions, (with a shelf life ˃ six month when stored in the dark but under otherwise ambient conditions). Moreover, the HPTS-film is stable in water, salt solution and even in acid (pH=2), and in each of these media it can be used to detect dissolved CO2.
Resumo:
The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.
Resumo:
In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.
Digital Debris of Internet Art: An Allegorical and Entropic Resistance to the Epistemology of Search
Resumo:
This Ph.D., by thesis, proposes a speculative lens to read Internet Art via the concept of digital debris. In order to do so, the research explores the idea of digital debris in Internet Art from 1993 to 2011 in a series of nine case studies. Here, digital debris are understood as words typed in search engines and which then disappear; bits of obsolete codes which are lingering on the Internet, abandoned website, broken links or pieces of ephemeral information circulating on the Internet and which are used as a material by practitioners. In this context, the thesis asks what are digital debris? The thesis argues that the digital debris of Internet Art represent an allegorical and entropic resistance to the what Art Historian David Joselit calls the Epistemology of Search. The ambition of the research is to develop a language in-between the agency of the artist and the autonomy of the algorithm, as a way of introducing Internet Art to a pluridisciplinary audience, hence the presence of the comparative studies unfolding throughout the thesis, between Internet Art and pionners in the recycling of waste in art, the use of instructions as a medium and the programming of poetry. While many anthropological and ethnographical studies are concerned with the material object of the computer as debris once it becomes obsolete, very few studies have analysed waste as discarded data. The research shifts the focus from an industrial production of digital debris (such as pieces of hardware) to obsolete pieces of information in art practice. The research demonstrates that illustrations of such considerations can be found, for instance, in Cory Arcangel’s work Data Diaries (2001) where QuickTime files are stolen, disassembled, and then re-used in new displays. The thesis also looks at Jodi’s approach in Jodi.org (1993) and Asdfg (1998), where websites and hyperlinks are detourned, deconstructed, and presented in abstract collages that reveals the architecture of the Internet. The research starts in a typological manner and classifies the pieces of Internet Art according to the structure at play in the work. Indeed if some online works dealing with discarded documents offer a self-contained and closed system, others nurture the idea of openness and unpredictability. The thesis foregrounds the ideas generated through the artworks and interprets how those latter are visually constructed and displayed. Not only does the research questions the status of digital debris once they are incorporated into art practice but it also examine the method according to which they are retrieved, manipulated and displayed to submit that digital debris of Internet Art are the result of both semantic and automated processes, rendering them both an object of discourse and a technical reality. Finally, in order to frame the serendipity and process-based nature of the digital debris, the Ph.D. concludes that digital debris are entropic . In other words that they are items of language to-be, paradoxically locked in a constant state of realisation.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) whose migration from food packaging is recognized worldwide. However, the real overall food contamination and related consequences are yet largely unknown. Among humans, children’s exposure to BPA has been emphasized because of the immaturity of their biological systems. The main aim of this study was to assess the reproductive impact of BPA leached from commercially available plastic containers used or related to child nutrition, performing ecotoxicological tests using the biomonitoring species Daphnia magna. Acute and chronic tests, as well as single and multigenerational tests were done. Migration of BPA from several baby bottles and other plastic containers evaluated by GC-MS indicated that a broader range of foodstuff may be contaminated when packed in plastics. Ecotoxicological test results performed using defined concentrations of BPA were in agreement with literature, although a precocious maturity of daphnids was detected at 3.0 mg/L. Curiously, an increased reproductive output (neonates per female) was observed when daphnids were bred in the polycarbonate (PC) containers (145.1±4.3 % to 264.7±3.8 %), both in single as in multigenerational tests, in comparison with the negative control group (100.3±1.6 %). A strong correlated dose-dependent ecotoxicological effect was observed, providing evidence that BPA leached from plastic food packaging materials act as functional estrogen in vivo at very low concentrations. In contrast, neonate production by daphnids cultured in polypropylene and non-PC bottles was slightly but not significantly enhanced (92.5±2.0 % to 118.8±1.8 %). Multigenerational tests also revealed magnification of the adverse effects, not only on fecundity but also on mortality, which represents a worrying trend for organisms that are chronically exposed to xenoestrogens for many generations. Two plausible explanations for the observed results could be given: a non-monotonic dose–response relationship or a mixture toxicity effect.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.