927 resultados para Plasminogen-activator
Resumo:
MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-β, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymphnode metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.
Resumo:
Elevated circulating interleukin-6 (IL6) and up-regulated S100P in prostate cancer (PCa) specimens correlate independently with progression to androgen-independent and metastatic PCa. The cause of up-regulated S100P levels in advanced PCa remains to be determined. We investigated the possibility that IL6 is an inducer of S100P. Determination of mRNA and protein levels by real-time PCR and Western blotting revealed that IL6 is a more potent inducer of S100P than the synthetic androgen, R1881, in the LNCaP/C4-2B model of PCa progression. IL6 did not require androgen to induce S100P in these cells, which express a functional androgen receptor (AR). Like R1881, IL6 was unable to induce S100P in PC3 cells that lack a functional AR. IL6 did not strongly induce the AR-dependent genes PSA and KLK2 and, contrary to R1881, down-regulated Cyr61/CCN1, a potential marker that is down-regulated in PCa. Epidermal growth factor (EGF), which like IL6 is a non-androgen activator of the AR, did not induce S100P. The data identifies a unique gene-induction profile for IL6 and suggests that IL6 may require a functional AR for S100P induction. A link between elevated IL6 and up-regulated S100P in androgen-refractory and metastatic PCa is postulated.
Resumo:
Background: Expression of matrix metalloproteinase-2 (MMP-2), the 72-kd type IV collagenase/gelatinase, by cancer cells has been implicated in metastasis through cancer cell invasion of basement membranes mediated by degradation of collagen IV. However, the abundance of this latent proenzyme in normal tissues and fluids suggests that MMP-2 proenzyme utilization is limited by its physiological activation rather than expression alone. We previously reported activation of this proenzyme by normal and malignant fibroblastoid cells cultured on collagen I (vitrogen) gels. Purpose: Our purposes in this study were 1) to determine whether MMP-2 activation is restricted to the more invasive human breast cancer cell lines and 2) to localize the activating mechanism. Methods: Zymography was used to monitor MMP-2 activation through detection of latent MMP-2 (72 kd) and mature species of smaller molecular weight (59 or 62 kd). Human breast cancer cell lines cultured on plastic, vitrogen, and other matrices were thus screened for MMP- 2 activation. Collagen I-cultured cells were exposed to cycloheximide, a protein synthesis inhibitor, or to protease inhibitors to determine the nature of the MMP-2-activating mechanism. Triton X-114 (TX-114) detergent extracts from cells cultured on collagen I or plastic were incubated with latent MMP-2 and analyzed by zymography to localize the MMP-2 activator. Results: MMP-2 activation was only induced by collagen I culture in the more aggressive, highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines (Hs578T, MDA-MB-436, BT549, MDA-MB-231, MDA- MB-435, MCF-7(ADR)) and was independent of MMP-2 production. MMP-2 activation was detected in cells cultured on collagen I gels but not in those cultured on gelatin gels, Matrigel, or thin layers of collagen I or IV, gelatin, or fibronectin. Collagen-induced activation was specific for the enzyme species MMP-2, since MMP-9, the 92-kd type IV collagenase/gelatinase, was not activatable under similar conditions. MMP-2 activation was inhibited by cycloheximide and was sensitive to a metalloproteinase inhibitor but not to aspartyl, serine, or cysteinyl protease inhibitors. MMP-2 activation was detected in the hydrophobic, plasma membrane-enriched, TX-114 extracts from invasive collagen I-cultured cells. Conclusion: Collagen I-induced MMP-2 activation is restricted to highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines, is independent of MMP-2 production, and is associated with metastatic potential. Our findings are consistent with plasma membrane localization of the activator. Implications: The MMP-2 activation mechanism may represent a new target for diagnosis, prognosis, and treatment of human breast cancer.
Resumo:
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.
Resumo:
The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.
Resumo:
This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.
Resumo:
The trans-activator of transcription (TAT) peptide is regarded as the “gold standard” for cell-penetrating peptides, capable of traversing a mammalian membrane passively into the cytosolic space. This characteristic has been exploited through conjugation of TAT for applications such as drug delivery. However, the process by which TAT achieves membrane penetration remains ambiguous and unresolved. Mechanistic details of TAT peptide action are revealed herein by using three complementary methods: quartz crystal microbalance with dissipation (QCM-D), scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). When combined, these three scales of measurement define that the membrane uptake of the TAT peptide is by trans-membrane insertion using a “worm-hole” pore that leads to ion permeability across the membrane layer. AFM data provided nanometre-scale visualisation of TAT punctuation using a mammalian-mimetic membrane bilayer. The TAT peptide does not show the same specificity towards a bacterial mimetic membrane and QCM-D and SECM showed that the TAT peptide demonstrates a disruptive action towards these membranes. This investigation supports the energy-independent uptake of the cationic TAT peptide and provides empirical data that clarify the mechanism by which the TAT peptide achieves its membrane activity. The novel use of these three biophysical techniques provides valuable insight into the mechanism for TAT peptide translocation, which is essential for improvements in the cellular delivery of TAT-conjugated cargoes including therapeutic agents required to target specific intracellular locations.
Resumo:
Objective: To identify genetic associations with severity of radiographic damage in ankylosing spondylitis (AS). Method: We studied 1537 AS cases of European descent; all fulfilled the modified New York Criteria. Radiographic severity was assessed from digitised lateral radiographs of the cervical and lumbar spine using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A two-phase genotyping design was used. In phase 1, 498 single nucleotide polymorphisms (SNPs) were genotyped in 688 cases; these were selected to capture >90% of the common haplotypic variation in the exons, exon-intron boundaries, and 5 kb flanking DNA in the 5' and 3' UTR of 74 genes involved in anabolic or catabolic bone pathways. In phase 2, 15 SNPs exhibiting p<0.05 were genotyped in a further cohort of 830 AS cases; results were analysed both separately and in combination with the discovery phase data. Association was tested by contingency tables after separating the samples into 'mild' and 'severe' groups, defined as the bottom and top 40% by mSASSS, adjusted for gender and disease duration. Results: Experiment-wise association was observed with the SNP rs8092336 (combined OR 0.32, p=1.2×10-5), which lies within RANK (receptor activator of NF?B), a gene involved in osteoclastogenesis, and in the interaction between T cells and dendritic cells. Association was also found with the SNP rs1236913 in PTGS1 (prostaglandin-endoperoxide synthase 1, cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10-3). There was no observed association between radiographic severity and HLA-B*27. Conclusions: These findings support roles for bone resorption and prostaglandins pathways in the osteoproliferative changes in AS.
Resumo:
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.
Resumo:
Objective: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts, which are formed from marrow-derived cells that circulate in the monocyte fraction. Ihe aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. Methods: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF, 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. Results: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls, osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)2D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. Conclusion: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.
Resumo:
Background Guidelines and clinical practice for the prevention of complications associated with central venous catheters (CVC) around the world vary greatly. Most institutions recommend the use of heparin to prevent occlusion, however there is debate regarding the need for heparin and evidence to suggest 0.9% sodium chloride (normal saline) may be as effective. The use of heparin is not without risk, may be unnecessary and is also associated with increased cost. Objectives To assess the clinical effects (benefits and harms) of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Search Methods The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched April 2015) and the Cochrane Register of Studies (Issue 3, 2015). We also searched the reference lists of retrieved trials. Selection criteria Randomised controlled trials that compared the efficacy of normal saline with heparin to prevent occlusion of long term CVCs in infants and children aged up to 18 years of age were included. We excluded temporary CVCs and peripherally inserted central catheters (PICC). Data Collection and Analysis Two review authors independently assessed trial inclusion criteria, trial quality and extracted data. Rate ratios were calculated for two outcome measures - occlusion of the CVC and central line-associated blood stream infection. Other outcome measures included duration of catheter placement, inability to withdraw blood from the catheter, use of urokinase or recombinant tissue plasminogen, incidence of removal or re-insertion of the catheter, or both, and other CVC-related complications such as dislocation of CVCs, other CVC site infections and thrombosis. Main Results Three trials with a total of 245 participants were included in this review. The three trials directly compared the use of normal saline and heparin, however, between studies, all used different protocols for the standard and experimental arms with different concentrations of heparin and different frequency of flushes reported. In addition, not all studies reported on all outcomes. The quality of the evidence ranged from low to very low because there was no blinding, heterogeneity and inconsistency between studies was high and the confidence intervals were wide. CVC occlusion was assessed in all three trials (243 participants). We were able to pool the results of two trials for the outcomes of CVC occlusion and CVC-associated blood stream infection. The estimated rate ratio for CVC occlusion per 1000 catheter days between the normal saline and heparin group was 0.75 (95% CI 0.10 to 5.51, two studies, 229 participants, very low quality evidence). The estimated rate ratio for CVC-associated blood stream infection was 1.48 (95% CI 0.24 to 9.37, two studies, 231 participants; low quality evidence). The duration of catheter placement was reported to be similar between the two study arms, in one study (203 participants). Authors' Conclusions The review found that there was not enough evidence to determine the effects of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Ultimately, if this evidence were available, the development of evidenced-based clinical practice guidelines and consistency of practice would be facilitated.
Resumo:
Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.
Resumo:
The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.