966 resultados para Permutation-Symmetric Covariance
Resumo:
2000 Mathematics Subject Classification: 42C05.
Resumo:
2000 Mathematics Subject Classification: 03E04, 12J15, 12J25.
Resumo:
Николай Кутев, Величка Милушева - Намираме експлицитно всичките би-омбилични фолирани полусиметрични повърхнини в четиримерното евклидово пространство R^4
Resumo:
Красимир Йорджев, Христина Костадинова - В работата се разглежда една релация на еквивалентност в множеството от всички квадратни бинарни матрици. Обсъдена е комбинаторната задача за намиране мощността и елементите на фактормножеството относно тази релация. Разгледана е и възможността за получаване на някои специални елементи на това фактормножество. Предложен е алгоритъм за решаване на поставените задачи. Получените в статията резултати намират приложение при описанието топологията на различните тъкачни структури.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.
Resumo:
This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines which is compliant with GUM and PUMA methodologies. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout), axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Type A uncertainties were obtained from a repeatability study of the probe calibration process, a repeatability study of the actual measurement process, a system stability test and an elastic deformation test. Type B uncertainties were obtained from calibration certificates and estimates. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 µm with a plunger probe or 1.7 µm with a lever probe); axial runout (1.2 µm with a plunger probe or 1.5 µm with a lever probe); and coning/swash (0.44 arc seconds with a plunger probe or 0.60 arc seconds with a lever probe).
Resumo:
2000 Mathematics Subject Classification: C2P99.
Resumo:
MSC 2010: 30C45
Resumo:
2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
2000 Mathematics Subject Classification: Primary 60J45, 60J50, 35Cxx; Secondary 31Cxx.
Resumo:
2000 Mathematics Subject Classification: 15A69, 15A78.
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, secondary 30C80.
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.