972 resultados para POLYMERIC STABILIZERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium alginate as the biocompatible polymers. Methods: Implants of methylprednisolone sodium succinate (MPSS) were prepared by molding the drug-loaded polymeric mass obtained after ionotropic gelation method. The prepared implants were evaluated for drug loading, in vitro drug release and in vivo performance in traumatic spinal-injury rat model with paraplegia. Results: All the implant formulations were light pale solid matrix with smooth texture. Implants showed 86.56 ± 2.07 % drug loading. Drug release was 89.29 ± 1.25 % at the end of 7 days. Motor function was evaluated in traumatic spinal injury-induced rats in terms of its movement on the horizontal bar. At the end of 7 days, the test group showed the activity score (4.75 ± 0.02) slightly higher than that of standard (4.62 ± 0.25), but the difference was not statistically different (p > 0.05). Conclusion: MPSS-loaded implants produces good recovery in traumatic spinal-injury rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax®2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax®2533 was also chemically modified, obtaining the product called “Benzoyl-P2533”, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to control molar mass and termination of the growing chain is fundamental to create well-defined, reproducible materials. For this reason, in order to apply polydithienopyrrole (PDTP) as organic conjugated polymer, the possibility of controlled polymerization needs to be verified. Another aspect that is still not completely explored is bound to the optical activity of the PDTP, which bearing appropriate substituents may adopt a helical conformation. The configuration of the helix, built up from achiral co-monomers, can be established in an enantiopure way by using only a small percentage of the chiral monomer co-polymerized with achiral co-monomer. The effect, called “sergeants and soldiers effect”, is expressed by the nonlinear increase of the chiral response vs the ratio of the chiral co-monomer used for the polymerization. To date, this effect is still not completely explored for PDTP. In this framework the project will investigate, firstly, the possibility to obtain a controlled polymerization of PDTP. Then, monomers with different side chains and organometallic functions will be screened for a CTCP-type polymerization. Also a Lewis-acid based cationic polymerization will be performed. Moreover the chemical derivatization of dithienopyrrole DTP is explored: the research is going to concern also block copolymers, built up by DTP and monomers of different nature. The research will be extended also to the investigation of optically active derivates of PDTP, using a chiral monomer for the synthesis. The possibility to develop a supramolecular distribution of the polymeric chains, together with the “sergeants and soldiers effect” will be checked investigating a series of polymers with increasing amounts of chiral monomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron is an element essential for various biological processes, nevertheless at high concentration it can cause health issues in both plants and animals, thus making boron a pollutant element. Low cost and effective polymeric adsorbents capable of removing boron in aqueous solution at neutral pH were prepared for this purpose. The adsorbent selectivity towards boron was conferred taking advantage of the interaction between boric acid and the alcoholic groups of N-methyl-D-Glucamine, which are able to form specific complexes. Two different kinds of devices were produced and tested: cross-linked chitosan hydrogel beads (CCBMG) and PVA/chitosan membranes, the latter taking advantage of scCO2-assisted phase inversion technique. The capability of the adsorbents to be regenerated and to allow recovery of boric acid from a solution emulating the concentration of boric acid in seawater were evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning is the most common and industrially scalable technique for the production of polymeric nanofibers. Currently, nanocomposites are drawing much interest for their excellent properties in terms of flexibility, electrical conductivity and high surface area, which enhances the interaction with the surrounding environment. The objective of this thesis was the optimization of different electrospinning setups for the production of nanostructured polymeric composites using graphene-related materials as nanofillers. Such composites were obtained using different polymers as matrix (polyamide 6, polyinylidene fluoride and polylactic acid) that were selected and combined with the appropriate reinforcements based on their properties and their interest for specific applications. Moreover, this study highlighted the possibility to tune the morphology and size of the produced nanofibers by the addition of appropriate nanofillers even in low amounts. The addition of only 0.5% of GO allowed the production of smooth nanofibers with diameters up to 75% thinner (in the case of PLA) than the ones obtained from the pristine polymer. PVdF was charged with GO to produce triboelectric materials that can be exploited in a wearable nanogenerator for the conversion of human motion energy in electrical energy. The addition of GO improved the open-circuit voltage and power-output of a generator prototype by 3.5 times. Electrospun PA6 membranes were coated with rGO using a simple two-step technique to produce conductive textiles for wearable electronic applications. The sheet resistance of the produced materials was measured in approximately 500 Ω/sq and their resistance to washing and bending was successfully tested. These materials could be exploited as strain sensors or heating elements in smart textiles. PLA was co-electrospun with GO and cellulose nanofibers to produce high-surface area and porosity mats that could be exploited for the production of functionalized highly selective adsorption membranes with low pressure drops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between catalytic properties and the nature of the active phase is well-established, with increased presence typically leading to enhanced catalysis. However, the costs associated with acquiring and processing these metals can become economically and environmentally unsustainable for global industries. Thus, there is potential for a paradigm shift towards utilizing polymeric ligands or other polymeric systems to modulate and enhance catalytic performance. This alternative approach has the potential to reduce the requisite amount of active phase while preserving effective catalytic activity. Such a strategy could yield substantial benefits from both economic and environmental perspectives. The primary objective of this research is to examine the influence of polymeric hydro-soluble ligands on the final properties, such as size and dispersion of the active phase, as well as the catalytic activity, encompassing conversion, selectivity towards desired products, and stability, of colloidal gold nanoparticles supported on active carbon. The goal is to elucidate the impact of polymers systematically, offering a toolbox for fine-tuning catalytic performances from the initial stages of catalyst design. Moreover, investigating the potential to augment conversion and selectivity in specific reactions through tailored polymeric ligands holds promise for reshaping catalyst preparation methodologies, thereby fostering the development of more economically sustainable materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on the permebility analisys of Aquivion® 980 Perfluoro sulfonic acid (PFSA) polymer with particular reference to the influence of the equivalent weight (gram of polymer per molSO3H) on the permeation properties. Aquivion grade tested, indeed, were characterized by a lower equivalent weight ( 870 g/molSO3H against 980 of the present material) with respect to data present in the open literature. Permeability of different gases (CO2, N2, and CH4) was tested at different temperatures and different humidity, a parameter which greatly influences the gas transport in such hydrophilic material- Aquivion® swells consistently in humid conditions increasing its gas permeability of more than one order of magnitude with respect to values prevailing in dry conditions. Present data confirm such behavior being the permeability of all gases and vapors tested substantially increased in presence of water. Interestingly the increase in permeability results be similar for all the gases inspected, hence such enhanced permeation capability is not associated to a selectivity loss that happens in polymeric membranes. Although, the results, of CO2, are lower compared to those obtained with the different grades, with lower equivalent weight, of Aquivion, thus suggesting that an increase of this parameter is detrimental for both permeability and selectivity of the membranes with respect to CO2. This is likely related to the fact that a lower content of SO3H groups makes it difficult to have an interconnected water domain inside the membranes. A modeling approach was considered to describe the experimental data and to give a better insight into the observed behavior, unfortunately, it resulted not sensitive enough to catch the differences between the gas permeability in PSFAs with high and low equivalent weight. The latter were indeed usually contained within 10-20% which results to be the in the same range of model precision when used in a predictive way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the recent progress in the development of polymeric membranes for ion-selective electrodes. The importance of knowing the mechanism of potential development in membranes for ion-selective electrodes to reach lower detection limits and improve selectivity are discussed. Recent advances and future trends of research on ion-selective electrodes are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.