840 resultados para Optimal allocation
Resumo:
In this paper, we examine the design of permit trading programs when the objective is to minimize the cost of achieving an ex ante pollution target, that is, one that is defined in expectation rather than an ex post deterministic value. We consider two potential sources of uncertainty, the presence of either of which can make our model appropriate: incomplete information on abatement costs and uncertain delivery coefficients. In such a setting, we find three distinct features that depart from the well-established results on permit trading: (1) the regulator’s information on firms’ abatement costs can matter; (2) the optimal permit cap is not necessarily equal to the ex ante pollution target; and (3) the optimal trading ratio is not necessarily equal to the delivery coefficient even when it is known with certainty. Intuitively, since the regulator is only required to meet a pollution target on average, she can set the trading ratio and total permit cap such that there will be more pollution when abatement costs are high and less pollution when abatement costs are low. Information on firms’ abatement costs is important in order for the regulator to induce the optimal alignment between pollution level and abatement costs.
Resumo:
If financial deepening aids economic growth, then financial repression should be harmful. We use a natural experiment – the change in the English usury laws in 1714 – to analyze the effects of interest rate restrictions. We use a sample of individual loan transactions to demonstrate how the reduction of the legal maximum rate of interest affected the supply and demand for credit. Average loan size and minimum loan size increased strongly, and access to credit worsened for those with little ‘social capital.’ While we have no direct evidence that loans were misallocated, the discontinuity in loan receipts makes this highly likely. We conclude that financial repression can undermine the positive effects of financial deepening.
Resumo:
The empirical literature on the asset allocation and medical expenditures of U.S. households consistently shows that risky portfolio shares are increasing in both wealth and health whereas health investment shares are decreasing in these same variables. Despite this evidence, most of the existing models treat financial and health-related choices separately. This paper bridges this gap by proposing a tractable framework for the joint determination of optimal consumption, portfolio and health investments. We solve for the optimal rules in closed form and show that the model can theoretically reproduce the empirical facts. Capitalizing on this closed-form solution, we perform a structural estimation of the model on HRS data. Our parameter estimates are reasonable and confirm the relevance of all the main characteristics of the model.
Resumo:
Health literacy is defined as "the degree to which individuals have the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions." Low health literacy mainly affects certain populations at risk limiting access to care, interaction with caregivers and self-management. If there are screening tests, their routine use is not advisable and recommended interventions in practice consist rather to reduce barriers to patient-caregiver communication. It is thus important to include not only population's health literacy but also communication skills of a health system wich tend to become more complex.
Resumo:
A critical feature of cooperative animal societies is the reproductive skew, a shorthand term for the degree to which a dominant individual monopolizes overall reproduction in the group. Our theoretical analysis of the evolutionarily stable skew in matrifilial (i.e., mother-daughter) societies, in which relatednesses to offspring are asymmetrical, predicts that reproductive skews in such societies should tend to be greater than those of semisocial societies (i.e., societies composed of individuals of the same generation, such as siblings), in which relatednesses to offspring are symmetrical. Quantitative data on reproductive skews in semisocial and matrifilial associations within the same species for 17 eusocial Hymenoptera support this prediction. Likewise, a survey of reproductive partitioning within 20 vertebrate societies demonstrates that complete reproductive monopoly is more likely to occur in matrifilial than in semisocial societies, also as predicted by the optimal skew model.
Resumo:
OBJECTIVE: Surface magnetic resonance imaging (MRI) for aortic plaque assessment is limited by the trade-off between penetration depth and signal-to-noise ratio (SNR). For imaging the deep seated aorta, a combined surface and transesophageal MRI (TEMRI) technique was developed 1) to determine the individual contribution of TEMRI and surface coils to the combined signal, 2) to measure the signal improvement of a combined surface and TEMRI over surface MRI, and 3) to assess for reproducibility of plaque dimension analysis. METHODS AND RESULTS: In 24 patients six black blood proton-density/T2-weighted fast-spin echo images were obtained using three surface and one TEMRI coil for SNR measurements. Reproducibility of plaque dimensions (combined surface and TEMRI) was measured in 10 patients. TEMRI contributed 68% of the signal in the aortic arch and descending aorta, whereas the overall signal gain using the combined technique was up to 225%. Plaque volume measurements had an intraclass correlation coefficient of as high as 0.97. CONCLUSION: Plaque volume measurements for the quantification of aortic plaque size are highly reproducible for combined surface and TEMRI. The TEMRI coil contributes considerably to the aortic MR signal. The combined surface and TEMRI approach improves aortic signal significantly as compared to surface coils alone. CONDENSED ABSTRACT: Conventional MRI aortic plaque visualization is limited by the penetration depth of MRI surface coils and may lead to suboptimal image quality with insufficient reproducibility. By combining a transesophageal MRI (TEMRI) with surface MRI coils we enhanced local and overall image SNR for improved image quality and reproducibility.
Resumo:
In cooperative multiagent systems, agents interac to solve tasks. Global dynamics of multiagent teams result from local agent interactions, and are complex and difficult to predict. Evolutionary computation has proven a promising approach to the design of such teams. The majority of current studies use teams composed of agents with identical control rules ("geneti- cally homogeneous teams") and select behavior at the team level ("team-level selection"). Here we extend current approaches to include four combinations of genetic team composition and level of selection. We compare the performance of genetically homo- geneous teams evolved with individual-level selection, genetically homogeneous teams evolved with team-level selection, genetically heterogeneous teams evolved with individual-level selection, and genetically heterogeneous teams evolved with team-level selection. We use a simulated foraging task to show that the optimal combination depends on the amount of cooperation required by the task. Accordingly, we distinguish between three types of cooperative tasks and suggest guidelines for the optimal choice of genetic team composition and level of selection
Resumo:
An incentives based theory of policing is developed which can explain the phenomenon of random “crackdowns,” i.e., intermittent periods of high interdiction/surveillance. For a variety of police objective functions, random crackdowns can be part of the optimal monitoring strategy. We demonstrate support for implications of the crackdown theory using traffic data gathered by the Belgian Police Department and use the model to estimate the deterrence effectof additional resources spent on speeding interdiction.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
To understand whether retailers should consider consumer returns when merchandising, we study howthe optimal assortment of a price-taking retailer is influenced by its return policy. The retailer selects itsassortment from an exogenous set of horizontally differentiated products. Consumers make purchase andkeep/return decisions in nested multinomial logit fashion. Our main finding is that the optimal assortmenthas a counterintuitive structure for relatively strict return policies: It is optimal to offer a mix of the mostpopular and most eccentric products when the refund amount is sufficiently low, which can be viewed asa form of risk sharing between the retailer and consumers. In contrast, if the refund is sufficiently high, orwhen returns are disallowed, optimal assortment is composed of only the most popular products (a commonfinding in the literature). We provide preliminary empirical evidence for one of the key drivers of our results:more eccentric products have higher probability of return conditional on purchase. In light of our analyticalfindings and managerial insights, we conclude that retailers should take their return policies into accountwhen merchandising.