941 resultados para Nonlinear programming model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A CV aR kockázati mérték egyre nagyobb jelentőségre tesz szert portfóliók kockázatának megítélésekor. A portfolió egészére a CVaR kockázati mérték minimalizálását meg lehet fogalmazni kétlépcsős sztochasztikus feladatként. Az SRA algoritmus egy mostanában kifejlesztett megoldó algoritmus sztochasztikus programozási feladatok optimalizálására. Ebben a cikkben az SRA algoritmussal oldottam meg CV aR kockázati mérték minimalizálást. ___________ The risk measure CVaR is becoming more and more popular in recent years. In this paper we use CVaR for portfolio optimization. We formulate the problem as a two-stage stochastic programming model. We apply the SRA algorithm, which is a recently developed heuristic algorithm, to minimizing CVaR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of 3G (the 3rd generation telecommunication) value-added services brings higher requirements of Quality of Service (QoS). Wideband Code Division Multiple Access (WCDMA) is one of three 3G standards, and enhancement of QoS for WCDMA Core Network (CN) becomes more and more important for users and carriers. The dissertation focuses on enhancement of QoS for WCDMA CN. The purpose is to realize the DiffServ (Differentiated Services) model of QoS for WCDMA CN. Based on the parallelism characteristic of Network Processors (NPs), the NP programming model is classified as Pool of Threads (POTs) and Hyper Task Chaining (HTC). In this study, an integrated programming model that combines both of the two models was designed. This model has highly efficient and flexible features, and also solves the problems of sharing conflicts and packet ordering. We used this model as the programming model to realize DiffServ QoS for WCDMA CN. ^ The realization mechanism of the DiffServ model mainly consists of buffer management, packet scheduling and packet classification algorithms based on NPs. First, we proposed an adaptive buffer management algorithm called Packet Adaptive Fair Dropping (PAFD), which takes into consideration of both fairness and throughput, and has smooth service curves. Then, an improved packet scheduling algorithm called Priority-based Weighted Fair Queuing (PWFQ) was introduced to ensure the fairness of packet scheduling and reduce queue time of data packets. At the same time, the delay and jitter are also maintained in a small range. Thirdly, a multi-dimensional packet classification algorithm called Classification Based on Network Processors (CBNPs) was designed. It effectively reduces the memory access and storage space, and provides less time and space complexity. ^ Lastly, an integrated hardware and software system of the DiffServ model of QoS for WCDMA CN was proposed. It was implemented on the NP IXP2400. According to the corresponding experiment results, the proposed system significantly enhanced QoS for WCDMA CN. It extensively improves consistent response time, display distortion and sound image synchronization, and thus increases network efficiency and saves network resource.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional-form group approach, we designed a sampling method that included the functional-form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long-term trends of increasing abundance at most sites; however, at some sites the long-term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long-term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional-form group, indicating that the use of the functionalform group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the research programs carried out within the Czech-Ukrainian scientific co-operation is the monitoring of global solar and ultraviolet radiation at the Vernadsky Station (formerly the British Faraday Station), Antarctica. Radiation measurements have been made since 2002. Recently, a special attention is devoted to the measurements of the erythemally effective UVB radiation using a broadband Robertson Berger 501 UV-Biometer (Solar Light Co. Inc., USA). This paper brings some results from modelling the daily sums of erythemally effective UVB radiation intensity in relation to the total ozone content (TOC) in atmosphere and surface intensity of the global solar radiation. Differences between the satellite- and ground-based measurements of the TOC at the Vernadsky Station are taken into consideration. The modelled erythemally effective UVB radiation differed slightly depending on the seasons and sources of the TOC. The model relative prediction error for ground- and satellite-based measurements varied between 9.5% and 9.6% in the period of 2002-2003, while it ranged from 7.4% to 8.8% in the period of 2003-2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lors du transport du bois de la forêt vers les usines, de nombreux événements imprévus peuvent se produire, événements qui perturbent les trajets prévus (par exemple, en raison des conditions météo, des feux de forêt, de la présence de nouveaux chargements, etc.). Lorsque de tels événements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit être détourné vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-même "fermé" suite à un événement imprévu. Il est donc essentiel de fournir aux chauffeurs des informations en temps réel, en particulier des suggestions de chemins alternatifs lorsqu’une route prévue s’avère impraticable. Les possibilités de recours en cas d’imprévus dépendent des caractéristiques de la chaîne logistique étudiée comme la présence de camions auto-chargeurs et la politique de gestion du transport. Nous présentons trois articles traitant de contextes d’application différents ainsi que des modèles et des méthodes de résolution adaptés à chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent être faits pour minimiser les changements apportés au plan initial. Bien que la flotte de camions soit homogène, il y a un ordre de priorité des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est également une priorité. Étant donné que les conséquences des événements imprévus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposée traite d’abord l’annulation et le retard d’un seul voyage, puis elle est généralisée pour traiter des événements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactés durant la même semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivée du camion à la fois au site forestier et à l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiés. Cette approche fournit aux répartiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient être obtenues si le répartiteur était autorisé à apporter plus de modifications au plan initial. Dans le second article, nous considérons un contexte où un seul voyage à la fois est communiqué aux chauffeurs. Le répartiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui révéler le prochain voyage. Ce contexte est plus souple et offre plus de possibilités de recours en cas d’imprévus. En plus, le problème hebdomadaire peut être divisé en des problèmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des périodes limitées durant la journée. Nous utilisons un modèle de programmation mathématique basé sur un réseau espace-temps pour réagir aux perturbations. Bien que ces dernières puissent avoir des effets différents sur le plan de transport initial, une caractéristique clé du modèle proposé est qu’il reste valable pour traiter tous les imprévus, quelle que soit leur nature. En effet, l’impact de ces événements est capturé dans le réseau espace-temps et dans les paramètres d’entrée plutôt que dans le modèle lui-même. Le modèle est résolu pour la journée en cours chaque fois qu’un événement imprévu est révélé. Dans le dernier article, la flotte de camions est hétérogène, comprenant des camions avec des chargeuses à bord. La configuration des routes de ces camions est différente de celle des camions réguliers, car ils ne doivent pas être synchronisés avec les chargeuses. Nous utilisons un modèle mathématique où les colonnes peuvent être facilement et naturellement interprétées comme des itinéraires de camions. Nous résolvons ce modèle en utilisant la génération de colonnes. Dans un premier temps, nous relaxons l’intégralité des variables de décision et nous considérons seulement un sous-ensemble des itinéraires réalisables. Les itinéraires avec un potentiel d’amélioration de la solution courante sont ajoutés au modèle de manière itérative. Un réseau espace-temps est utilisé à la fois pour représenter les impacts des événements imprévus et pour générer ces itinéraires. La solution obtenue est généralement fractionnaire et un algorithme de branch-and-price est utilisé pour trouver des solutions entières. Plusieurs scénarios de perturbation ont été développés pour tester l’approche proposée sur des études de cas provenant de l’industrie forestière canadienne et les résultats numériques sont présentés pour les trois contextes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an integer programming model for developing optimal shift schedules while allowing extensive flexibility in terms of alternate shift starting times, shift lengths, and break placement. The model combines the work of Moondra (1976) and Bechtold and Jacobs (1990) by implicitly matching meal breaks to implicitly represented shifts. Moreover, the new model extends the work of these authors to enable the scheduling of overtime and the scheduling of rest breaks. We compare the new model to Bechtold and Jacobs' model over a diverse set of 588 test problems. The new model generates optimal solutions more rapidly, solves problems with more shift alternatives, and does not generate schedules violating the operative restrictions on break timing.