868 resultados para Nonlinear constrained optimization problems
Resumo:
One major problem of concurrent multi-path transfer (CMT) scheme in multi-homed mobile networks is that the utilization of different paths with diverse delays may cause packet reordering among packets of the same ?ow. In the case of TCP-like, the reordering exacerbates the problem by bringing more timeouts and unnecessary retransmissions, which eventually degrades the throughput of connections considerably. To address this issue, we ?rst propose an Out-of-order Scheduling for In-order Arriving (OSIA), which exploits the sending time discrepancy to preserve the in-order packet arrival. Then, we formulate the optimal traf?c scheduling as a constrained optimization problem and derive its closedform solution by our proposed progressive water-?lling solution. We also present an implementation to enforce the optimal scheduling scheme using cascaded leaky buckets with multiple faucets, which provides simple guidelines on maximizing the utilization of aggregate bandwidth while decreasing the probability of triggering 3 dupACKs. Compared with previous work, the proposed scheme has lower computation complexity and can also provide the possibility for dynamic network adaptability and ?ner-grain load balancing. Simulation results show that our scheme signi?cantly alleviates reordering and enhances transmission performance.
Resumo:
Abstract Transport is the foundation of any economy: it boosts economic growth, creates wealth, enhances trade, geographical accessibility and the mobility of people. Transport is also a key ingredient for a high quality of life, making places accessible and bringing people together. The future prosperity of our world will depend on the ability of all of its regions to remain fully and competitively integrated in the world economy. Efficient transport is vital in making this happen. Operations research can help in efficiently planning the design and operating transport systems. Planning and operational processes are fields that are rich in combinatorial optimization problems. These problems can be analyzed and solved through the application of mathematical models and optimization techniques, which may lead to an improvement in the performance of the transport system, as well as to a reduction in the time required for solving these problems. The latter aspect is important, because it increases the flexibility of the system: the system can adapt in a faster way to changes in the environment (i.e.: weather conditions, crew illness, failures, etc.). These disturbing changes (called disruptions) often enforce the schedule to be adapted. The direct consequences are delays and cancellations, implying many schedule adjustments and huge costs. Consequently, robust schedules and recovery plans must be developed in order to fight against disruptions. This dissertation makes contributions to two different fields: rail and air applications. Robust planning and recovery methods are presented. In the field of railway transport we develop several mathematical models which answer to RENFE’s (the major railway operator in Spain) needs: 1. We study the rolling stock assignment problem: here, we introduce some robust aspects in order to ameliorate some operations which are likely to fail. Once the rolling stock assignment is known, we propose a robust routing model which aims at identifying the train units’ sequences while minimizing the expected delays and human resources needed to perform the sequences. 2. It is widely accepted that the sequential solving approach produces solutions that are not global optima. Therefore, we develop an integrated and robust model to determine the train schedule and rolling stock assignment. We also propose an integrated model to study the rolling stock circulations. Circulations are determined by the rolling stock assignment and routing of the train units. 3. Although our aim is to develop robust plans, disruptions will be likely to occur and recovery methods will be needed. Therefore, we propose a recovery method which aims to recover the train schedule and rolling stock assignment in an integrated fashion all while considering the passenger demand. In the field of air transport we develop several mathematical models which answer to IBERIA’s (the major airline in Spain) needs: 1. We look at the airline-scheduling problem and develop an integrated approach that optimizes schedule design, fleet assignment and passenger use so as to reduce costs and create fewer incompatibilities between decisions. Robust itineraries are created to ameliorate misconnected passengers. 2. Air transport operators are continuously facing competition from other air operators and different modes of transport (e.g., High Speed Rail). Consequently, airline profitability is critically influenced by the airline’s ability to estimate passenger demands and construct profitable flight schedules. We consider multi-modal competition including airline and rail, and develop a new approach that estimates the demand associated with a given schedule; and generates airline schedules and fleet assignments using an integrated schedule design and fleet assignment optimization model that captures the impacts of schedule decisions on passenger demand.
Resumo:
Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.
Resumo:
La seguridad verificada es una metodología para demostrar propiedades de seguridad de los sistemas informáticos que se destaca por las altas garantías de corrección que provee. Los sistemas informáticos se modelan como programas probabilísticos y para probar que verifican una determinada propiedad de seguridad se utilizan técnicas rigurosas basadas en modelos matemáticos de los programas. En particular, la seguridad verificada promueve el uso de demostradores de teoremas interactivos o automáticos para construir demostraciones completamente formales cuya corrección es certificada mecánicamente (por ordenador). La seguridad verificada demostró ser una técnica muy efectiva para razonar sobre diversas nociones de seguridad en el área de criptografía. Sin embargo, no ha podido cubrir un importante conjunto de nociones de seguridad “aproximada”. La característica distintiva de estas nociones de seguridad es que se expresan como una condición de “similitud” entre las distribuciones de salida de dos programas probabilísticos y esta similitud se cuantifica usando alguna noción de distancia entre distribuciones de probabilidad. Este conjunto incluye destacadas nociones de seguridad de diversas áreas como la minería de datos privados, el análisis de flujo de información y la criptografía. Ejemplos representativos de estas nociones de seguridad son la indiferenciabilidad, que permite reemplazar un componente idealizado de un sistema por una implementación concreta (sin alterar significativamente sus propiedades de seguridad), o la privacidad diferencial, una noción de privacidad que ha recibido mucha atención en los últimos años y tiene como objetivo evitar la publicación datos confidenciales en la minería de datos. La falta de técnicas rigurosas que permitan verificar formalmente este tipo de propiedades constituye un notable problema abierto que tiene que ser abordado. En esta tesis introducimos varias lógicas de programa quantitativas para razonar sobre esta clase de propiedades de seguridad. Nuestra principal contribución teórica es una versión quantitativa de una lógica de Hoare relacional para programas probabilísticos. Las pruebas de correción de estas lógicas son completamente formalizadas en el asistente de pruebas Coq. Desarrollamos, además, una herramienta para razonar sobre propiedades de programas a través de estas lógicas extendiendo CertiCrypt, un framework para verificar pruebas de criptografía en Coq. Confirmamos la efectividad y aplicabilidad de nuestra metodología construyendo pruebas certificadas por ordendor de varios sistemas cuyo análisis estaba fuera del alcance de la seguridad verificada. Esto incluye, entre otros, una meta-construcción para diseñar funciones de hash “seguras” sobre curvas elípticas y algoritmos diferencialmente privados para varios problemas de optimización combinatoria de la literatura reciente. ABSTRACT The verified security methodology is an emerging approach to build high assurance proofs about security properties of computer systems. Computer systems are modeled as probabilistic programs and one relies on rigorous program semantics techniques to prove that they comply with a given security goal. In particular, it advocates the use of interactive theorem provers or automated provers to build fully formal machine-checked versions of these security proofs. The verified security methodology has proved successful in modeling and reasoning about several standard security notions in the area of cryptography. However, it has fallen short of covering an important class of approximate, quantitative security notions. The distinguishing characteristic of this class of security notions is that they are stated as a “similarity” condition between the output distributions of two probabilistic programs, and this similarity is quantified using some notion of distance between probability distributions. This class comprises prominent security notions from multiple areas such as private data analysis, information flow analysis and cryptography. These include, for instance, indifferentiability, which enables securely replacing an idealized component of system with a concrete implementation, and differential privacy, a notion of privacy-preserving data mining that has received a great deal of attention in the last few years. The lack of rigorous techniques for verifying these properties is thus an important problem that needs to be addressed. In this dissertation we introduce several quantitative program logics to reason about this class of security notions. Our main theoretical contribution is, in particular, a quantitative variant of a full-fledged relational Hoare logic for probabilistic programs. The soundness of these logics is fully formalized in the Coq proof-assistant and tool support is also available through an extension of CertiCrypt, a framework to verify cryptographic proofs in Coq. We validate the applicability of our approach by building fully machine-checked proofs for several systems that were out of the reach of the verified security methodology. These comprise, among others, a construction to build “safe” hash functions into elliptic curves and differentially private algorithms for several combinatorial optimization problems from the recent literature.
Resumo:
La creciente demanda de energía eléctrica y la necesidad de implementar energías no contaminantes hace que las llamadas tecnologías verdes sean cada día más solicitadas. Entre estas tecnologías encontramos la energía solar y la energía eólica; ambas tienen una trayectoria de uso e investigación bastante amplia, sin embargo aún presentan problemas de fondo que impiden dar mayor impulso a su uso. El objetivo de la presente tesis es presentar soluciones a problemas de optimización en campos conversores de energía. Para ello se analizan y resuelven dos problemas por medio de técnicas de aerodinámica experimental: el primero sobre campos de colectores solares y el segundo sobre campos eólicos. Las técnicas de medición utilizadas en aerodinámica, y en el presente trabajo, son: medición de cargas, anemometría de hilo caliente, velocimetría por imagen de partículas y escaneo de presiones; además de un análisis estadístico de los datos. En el primer caso se ensayan experimentalmente colectores solares parabólicos en donde, por cuestiones de seguridad o por protección contra el viento, se utilizan cercas. Éstas modifican el comportamiento del flujo corriente abajo y se ha encontrado que la distancia a la cual se colocan, así como el tipo de cercas (sólida o permeable), modifican las cargas estructurales a las que los colectores están expuestos. Los resultados demuestran que existe una distancia crítica en la cual la presencia de la cerca aumenta la carga en lugar de disminuirla, por lo cual la selección adecuada del parapeto y la distancia a la cual se coloca son de suma importancia para la optimización de la estructura. En el segundo caso se ensaya experimentalmente y simula numéricamente la estela de turbinas eólicas por medio de discos porosos. En donde un disco permeable simula el rotor de una turbina. El disco es capaz de semejar la estela y los efectos que ésta puede causar corriente abajo. Los resultados muestran que seleccionando adecuadamente la porosidad, es posible simular coeficientes de empuje similares a los desarrollados por los aerogeneradores, además la estela y sus efectos son semejantes a los medidos en campo. ABSTRACT The called green energy technologies are increasingly required because of the growing demand for electricity and the need to implement nonpolluting energy. Among the green energy technologies it is found the solar and the wind energy, both have a history of use and fairly extensive research; however they still have problems which limit to give them further impetus to its use. The aim of this thesis is to present solutions to optimization problems in energy harvesting. To this end it is analysed, and solved, two problems by means of techniques in experimental aerodynamics: the first issue with regard to parabolic troughs and the second about wind farms. The measurement techniques commonly used in aerodynamics, and used in this research work, are: measurement of loads, hot wire anemometry, particle image velocimetry and scanning of pressures; where data are collected and then an statistical analysis is done. In the first case it is tested parabolic troughs where, either for security reasons or protection against the wind actions, fences are used. These fences modify the behaviour of flow downstream and it was found that the distance at which they are placed, and the type of fences (solid or permeable) modify the structural loads to which the parabolic troughs are exposed. The results show that there is a critical distance at which the presence of the fence increases the load instead of protecting the parabolic trough, hence making the proper selection of the parapet and the distance at which it stands are paramount for the optimization of the structure. In the second case it is tested, experimentally and numerically, the wake of wind turbines by means of porous disks; where the permeable disc simulates a turbine rotor. The disc is able to mimic the wake and the effects that it can cause downstream. The results show that by properly selecting the porosity, it is possible to simulate drag coefficients similar to those developed by wind turbines; moreover the porous disk wake and its effects are similar to those measured on field.
Resumo:
La tesis está focalizada en la resolución de problemas de optimización combinatoria, haciendo uso de las opciones tecnológicas actuales que ofrecen las tecnologías de la información y las comunicaciones, y la investigación operativa. Los problemas de optimización combinatoria se resuelven en general mediante programación lineal y metaheurísticas. La aplicación de las técnicas de resolución de los problemas de optimización combinatoria requiere de una elevada carga computacional, y los algoritmos deben diseñarse, por un lado pensando en la efectividad para encontrar buenas soluciones del problema, y por otro lado, pensando en un uso adecuado de los recursos informáticos disponibles. La programación lineal y las metaheurísticas son técnicas de resolución genéricas, que se pueden aplicar a diferentes problemas, partiendo de una base común que se particulariza para cada problema concreto. En el campo del desarrollo de software, los frameworks cumplen esa función de comenzar un proyecto con el trabajo general ya disponible, con la opción de cambiar o extender ese comportamiento base o genérico, para construir el sistema concreto, lo que permite reducir el tiempo de desarrollo, y amplía las posibilidades de éxito del proyecto. En esta tesis se han desarrollado dos frameworks de desarrollo. El framework ILP permite modelar y resolver problemas de programación lineal, de forma independiente al software de resolución de programación lineal que se utilice. El framework LME permite resolver problemas de optimización combinatoria mediante metaheurísticas. Tradicionalmente, las aplicaciones de resolución de problemas de optimización combinatoria son aplicaciones de escritorio que permiten gestionar toda la información de entrada del problema y resuelven el problema en local, con los recursos hardware disponibles. Recientemente ha aparecido un nuevo paradigma de despliegue y uso de aplicaciones que permite compartir recursos informáticos especializados por Internet. Esta nueva forma de uso de recursos informáticos es la computación en la nube, que presenta el modelo de software como servicio (SaaS). En esta tesis se ha construido una plataforma SaaS, para la resolución de problemas de optimización combinatoria, que se despliega sobre arquitecturas compuestas por procesadores multi-núcleo y tarjetas gráficas, y dispone de algoritmos de resolución basados en frameworks de programación lineal y metaheurísticas. Toda la infraestructura es independiente del problema de optimización combinatoria a resolver, y se han desarrollado tres problemas que están totalmente integrados en la plataforma SaaS. Estos problemas se han seleccionado por su importancia práctica. Uno de los problemas tratados en la tesis, es el problema de rutas de vehículos (VRP), que consiste en calcular las rutas de menor coste de una flota de vehículos, que reparte mercancías a todos los clientes. Se ha partido de la versión más clásica del problema y se han hecho estudios en dos direcciones. Por un lado se ha cuantificado el aumento en la velocidad de ejecución de la resolución del problema en tarjetas gráficas. Por otro lado, se ha estudiado el impacto en la velocidad de ejecución y en la calidad de soluciones, en la resolución por la metaheurística de colonias de hormigas (ACO), cuando se introduce la programación lineal para optimizar las rutas individuales de cada vehículo. Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. Otro de los problemas tratados en la tesis, es el problema de asignación de flotas (FAP), que consiste en crear las rutas de menor coste para la flota de vehículos de una empresa de transporte de viajeros. Se ha definido un nuevo modelo de problema, que engloba características de problemas presentados en la literatura, y añade nuevas características, lo que permite modelar los requerimientos de las empresas de transporte de viajeros actuales. Este nuevo modelo resuelve de forma integrada el problema de definir los horarios de los trayectos, el problema de asignación del tipo de vehículo, y el problema de crear las rotaciones de los vehículos. Se ha creado un modelo de programación lineal para el problema, y se ha resuelto por programación lineal y por colonias de hormigas (ACO). Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. El último problema tratado en la tesis es el problema de planificación táctica de personal (TWFP), que consiste en definir la configuración de una plantilla de trabajadores de menor coste, para cubrir una demanda de carga de trabajo variable. Se ha definido un modelo de problema muy flexible en la definición de contratos, que permite el uso del modelo en diversos sectores productivos. Se ha definido un modelo matemático de programación lineal para representar el problema. Se han definido una serie de casos de uso, que muestran la versatilidad del modelo de problema, y permiten simular el proceso de toma de decisiones de la configuración de una plantilla de trabajadores, cuantificando económicamente cada decisión que se toma. Este problema se ha desarrollado con el framework ILP, y está disponible en la plataforma SaaS. ABSTRACT The thesis is focused on solving combinatorial optimization problems, using current technology options offered by information technology and communications, and operations research. Combinatorial optimization problems are solved in general by linear programming and metaheuristics. The application of these techniques for solving combinatorial optimization problems requires a high computational load, and algorithms are designed, on the one hand thinking to find good solutions to the problem, and on the other hand, thinking about proper use of the available computing resources. Linear programming and metaheuristic are generic resolution techniques, which can be applied to different problems, beginning with a common base that is particularized for each specific problem. In the field of software development, frameworks fulfill this function that allows you to start a project with the overall work already available, with the option to change or extend the behavior or generic basis, to build the concrete system, thus reducing the time development, and expanding the possibilities of success of the project. In this thesis, two development frameworks have been designed and developed. The ILP framework allows to modeling and solving linear programming problems, regardless of the linear programming solver used. The LME framework is designed for solving combinatorial optimization problems using metaheuristics. Traditionally, applications for solving combinatorial optimization problems are desktop applications that allow the user to manage all the information input of the problem and solve the problem locally, using the available hardware resources. Recently, a new deployment paradigm has appeared, that lets to share hardware and software resources by the Internet. This new use of computer resources is cloud computing, which presents the model of software as a service (SaaS). In this thesis, a SaaS platform has been built for solving combinatorial optimization problems, which is deployed on architectures, composed of multi-core processors and graphics cards, and has algorithms based on metaheuristics and linear programming frameworks. The SaaS infrastructure is independent of the combinatorial optimization problem to solve, and three problems are fully integrated into the SaaS platform. These problems have been selected for their practical importance. One of the problems discussed in the thesis, is the vehicle routing problem (VRP), which goal is to calculate the least cost of a fleet of vehicles, which distributes goods to all customers. The VRP has been studied in two directions. On one hand, it has been quantified the increase in execution speed when the problem is solved on graphics cards. On the other hand, it has been studied the impact on execution speed and quality of solutions, when the problem is solved by ant colony optimization (ACO) metaheuristic, and linear programming is introduced to optimize the individual routes of each vehicle. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. Another problem addressed in the thesis, is the fleet assignment problem (FAP), which goal is to create lower cost routes for a fleet of a passenger transport company. It has been defined a new model of problem, which includes features of problems presented in the literature, and adds new features, allowing modeling the business requirements of today's transport companies. This new integrated model solves the problem of defining the flights timetable, the problem of assigning the type of vehicle, and the problem of creating aircraft rotations. The problem has been solved by linear programming and ACO. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. The last problem discussed in the thesis is the tactical planning staff problem (TWFP), which is to define the staff of lower cost, to cover a given work load. It has been defined a very rich problem model in the definition of contracts, allowing the use of the model in various productive sectors. It has been defined a linear programming mathematical model to represent the problem. Some use cases has been defined, to show the versatility of the model problem, and to simulate the decision making process of setting up a staff, economically quantifying every decision that is made. This problem has been developed with the ILP framework, and is available in the SaaS platform.
Resumo:
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.
Resumo:
In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems.
Resumo:
We study the global bifurcation of nonlinear Sturm-Liouville problems of the form -(pu')' + qu = lambda a(x)f(u), b(0)u(0) - c(0)u' (0) = 0, b(1)u(1) + c(1)u'(1) = 0 which are not linearizable in any neighborhood of the origin. (c) 2005 Published by Elsevier Ltd.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and
Resumo:
La riduzione dei consumi di combustibili fossili e lo sviluppo di tecnologie per il risparmio energetico sono una questione di centrale importanza sia per l’industria che per la ricerca, a causa dei drastici effetti che le emissioni di inquinanti antropogenici stanno avendo sull’ambiente. Mentre un crescente numero di normative e regolamenti vengono emessi per far fronte a questi problemi, la necessità di sviluppare tecnologie a basse emissioni sta guidando la ricerca in numerosi settori industriali. Nonostante la realizzazione di fonti energetiche rinnovabili sia vista come la soluzione più promettente nel lungo periodo, un’efficace e completa integrazione di tali tecnologie risulta ad oggi impraticabile, a causa sia di vincoli tecnici che della vastità della quota di energia prodotta, attualmente soddisfatta da fonti fossili, che le tecnologie alternative dovrebbero andare a coprire. L’ottimizzazione della produzione e della gestione energetica d’altra parte, associata allo sviluppo di tecnologie per la riduzione dei consumi energetici, rappresenta una soluzione adeguata al problema, che può al contempo essere integrata all’interno di orizzonti temporali più brevi. L’obiettivo della presente tesi è quello di investigare, sviluppare ed applicare un insieme di strumenti numerici per ottimizzare la progettazione e la gestione di processi energetici che possa essere usato per ottenere una riduzione dei consumi di combustibile ed un’ottimizzazione dell’efficienza energetica. La metodologia sviluppata si appoggia su un approccio basato sulla modellazione numerica dei sistemi, che sfrutta le capacità predittive, derivanti da una rappresentazione matematica dei processi, per sviluppare delle strategie di ottimizzazione degli stessi, a fronte di condizioni di impiego realistiche. Nello sviluppo di queste procedure, particolare enfasi viene data alla necessità di derivare delle corrette strategie di gestione, che tengano conto delle dinamiche degli impianti analizzati, per poter ottenere le migliori prestazioni durante l’effettiva fase operativa. Durante lo sviluppo della tesi il problema dell’ottimizzazione energetica è stato affrontato in riferimento a tre diverse applicazioni tecnologiche. Nella prima di queste è stato considerato un impianto multi-fonte per la soddisfazione della domanda energetica di un edificio ad uso commerciale. Poiché tale sistema utilizza una serie di molteplici tecnologie per la produzione dell’energia termica ed elettrica richiesta dalle utenze, è necessario identificare la corretta strategia di ripartizione dei carichi, in grado di garantire la massima efficienza energetica dell’impianto. Basandosi su un modello semplificato dell’impianto, il problema è stato risolto applicando un algoritmo di Programmazione Dinamica deterministico, e i risultati ottenuti sono stati comparati con quelli derivanti dall’adozione di una più semplice strategia a regole, provando in tal modo i vantaggi connessi all’adozione di una strategia di controllo ottimale. Nella seconda applicazione è stata investigata la progettazione di una soluzione ibrida per il recupero energetico da uno scavatore idraulico. Poiché diversi layout tecnologici per implementare questa soluzione possono essere concepiti e l’introduzione di componenti aggiuntivi necessita di un corretto dimensionamento, è necessario lo sviluppo di una metodologia che permetta di valutare le massime prestazioni ottenibili da ognuna di tali soluzioni alternative. Il confronto fra i diversi layout è stato perciò condotto sulla base delle prestazioni energetiche del macchinario durante un ciclo di scavo standardizzato, stimate grazie all’ausilio di un dettagliato modello dell’impianto. Poiché l’aggiunta di dispositivi per il recupero energetico introduce gradi di libertà addizionali nel sistema, è stato inoltre necessario determinare la strategia di controllo ottimale dei medesimi, al fine di poter valutare le massime prestazioni ottenibili da ciascun layout. Tale problema è stato di nuovo risolto grazie all’ausilio di un algoritmo di Programmazione Dinamica, che sfrutta un modello semplificato del sistema, ideato per lo scopo. Una volta che le prestazioni ottimali per ogni soluzione progettuale sono state determinate, è stato possibile effettuare un equo confronto fra le diverse alternative. Nella terza ed ultima applicazione è stato analizzato un impianto a ciclo Rankine organico (ORC) per il recupero di cascami termici dai gas di scarico di autovetture. Nonostante gli impianti ORC siano potenzialmente in grado di produrre rilevanti incrementi nel risparmio di combustibile di un veicolo, è necessario per il loro corretto funzionamento lo sviluppo di complesse strategie di controllo, che siano in grado di far fronte alla variabilità della fonte di calore per il processo; inoltre, contemporaneamente alla massimizzazione dei risparmi di combustibile, il sistema deve essere mantenuto in condizioni di funzionamento sicure. Per far fronte al problema, un robusto ed efficace modello dell’impianto è stato realizzato, basandosi sulla Moving Boundary Methodology, per la simulazione delle dinamiche di cambio di fase del fluido organico e la stima delle prestazioni dell’impianto. Tale modello è stato in seguito utilizzato per progettare un controllore predittivo (MPC) in grado di stimare i parametri di controllo ottimali per la gestione del sistema durante il funzionamento transitorio. Per la soluzione del corrispondente problema di ottimizzazione dinamica non lineare, un algoritmo basato sulla Particle Swarm Optimization è stato sviluppato. I risultati ottenuti con l’adozione di tale controllore sono stati confrontati con quelli ottenibili da un classico controllore proporzionale integrale (PI), mostrando nuovamente i vantaggi, da un punto di vista energetico, derivanti dall’adozione di una strategia di controllo ottima.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.