978 resultados para Multidrug-resistant organisms
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
A total of 72 Lactococcus strains (41 Lactococcus lactis and 31 Lactococcus garvieae) isolated from bovine milk were tested for susceptibility to 17 antibiotics and screened for the presence of antibiotic resistance genes using a microarray. Resistance to tetracycline, clindamycin, erythromycin, streptomycin, nitrofurantoin were found. The tetracycline-resistant L. garvieae and L. lactis harbored tet(M) and tet(S). L. lactis that were resistant to clindamycin were also resistant to erythromycin and possessed the erm(B) gene. The multidrug transporter mdt(A), originally described in L. lactis, was detected for the first time in L. garvieae and does not confer decreased susceptibility to erythromycin nor tetracycline in this species. Mdt(A) of L. garvieae contains one mutation in each antiporter motif C, which is known to play an essential role in drug efflux antiporters. This suggests that the mutations found in the C-motifs of Mdt(A) from L. garvieae may be responsible for susceptibility. The study revealed the presence of antibiotic resistance genes in non-pathogenic and pathogenic lactococci from bovine milk, including a mutated multidrug transporter in L. garvieae.
Resumo:
DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m5C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m5C MTases, including the consensus S-adenosyl-l-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-l-homocysteine (AdoHcy) has been determined at 1.8 Å resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HhaI, a confirmed bacterial m5C MTase, and the smaller target recognition domains of DNMT2 and M.HhaI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HhaI. DNMT2 binds AdoHcy in the same conformation as confirmed m5C MTases and, while DNMT2 shares all sequence and structural features with m5C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif.
Resumo:
An emerging theme in medical microbiology is that extensive variation exists in gene content among strains of many pathogenic bacterial species. However, this topic has not been investigated on a genome scale with strains recovered from patients with well-defined clinical conditions. Staphylococcus aureus is a major human pathogen and also causes economically important infections in cows and sheep. A DNA microarray representing >90% of the S. aureus genome was used to characterize genomic diversity, evolutionary relationships, and virulence gene distribution among 36 strains of divergent clonal lineages, including methicillin-resistant strains and organisms causing toxic shock syndrome. Genetic variation in S. aureus is very extensive, with ≈22% of the genome comprised of dispensable genetic material. Eighteen large regions of difference were identified, and 10 of these regions have genes that encode putative virulence factors or proteins mediating antibiotic resistance. We find that lateral gene transfer has played a fundamental role in the evolution of S. aureus. The mec gene has been horizontally transferred into distinct S. aureus chromosomal backgrounds at least five times, demonstrating that methicillin-resistant strains have evolved multiple independent times, rather than from a single ancestral strain. This finding resolves a long-standing controversy in S. aureus research. The epidemic of toxic shock syndrome that occurred in the 1970s was caused by a change in the host environment, rather than rapid geographic dissemination of a new hypervirulent strain. DNA microarray analysis of large samples of clinically characterized strains provides broad insights into evolution, pathogenesis, and disease emergence.
Resumo:
Since 1999, the European Antimicrobial Resistance Surveillance System (EARSS) has monitored the rise in infection due to a number of organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The EARSS reported that MRSA infections within intensive care units account for 25-50% of infections in many central and southern European countries, these included France, Spain, Great Britain, Malta, Greece and Italy. Each country has defined epidemic MRSA (EMRSA) strains; however, the method of spread of these strains from one country to another is unknown. In this current study, DNA profiles of 473 isolates of MRSA collected from the UK and Malta were determined by PFGE. Analysis of the data showed that two countries separated by a large geographical distance had a similar DNA profile pattern. Additionally it was demonstrated that strains of EMRSA normally found in the UK were also found in the Maltese cohort (EMRSA 15 and 16). A distinct DNA profile was found in the Maltese cohort, which may be a local EMRSA, and accounted for 14.4% of all Maltese isolates. The appearance of the same MRSA and EMRSA profiles in two separate countries suggests that MRSA can be transferred out of their country of origin and potentially establish in a new locality or country.
Resumo:
32
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
Resistant hypertension (RH) is a multifactorial disease, frequently associated with obesity and characterized by blood pressure above goal (140/90 mm Hg) despite the concurrent use of ≥3 antihypertensive drugs of different classes. The mechanisms of obesity-related hypertension include, among others, aldosterone excess and inflammatory adipokines, which have demonstrated a significant role in the pathogenesis of metabolic syndrome and RH. This review aims to summarize recent studies on the role of the adipokines leptin, resistin, and adiponectin in the pathophysiology of RH and target-organ damage associated with this condition. The deregulation of adipokine levels has been associated with clinical characteristics frequently recognized in RH such as diabetes, hyperactivity of sympathetic and renin-angiotensin-aldosterone systems, and vascular and renal damage. Strategies to regulate adipokines may be promising for the management of RH and some clinical implications must be considered when managing controlled and uncontrolled patients with RH.
Resumo:
Left ventricular hypertrophy and diastolic dysfunction (LVDD) remain highly frequent markers of cardiac damage and risk of progression to symptomatic heart failure, especially in resistant hypertension (RHTN). We have previously demonstrated that administration of sildenafil in hypertensive rats improves LVDD, restoring phosphodiesterase type 5 (PDE-5) inhibition in cardiac myocytes. We hypothesized that the long-acting PDE-5 inhibitor tadalafil may be clinically useful in improving LVDD in RHTN independently of blood pressure (BP) reduction. A single blinded, placebo-controlled, crossover study enrolled 19 patients with both RHTN and LVDD. Firstly, subjects received tadalafil (20 mg) for 14 days and after a 2-week washout period, they received placebo orally for 14 days. Patients were evaluated by office BP and ambulatory BP monitoring (ABPM), endothelial function (FMD), echocardiography, plasma brain natriuretic peptide (BNP-32), cyclic guanosine monophosphate (cGMP) and nitrite levels. No significant differences were detected in BP measurements. Remarkably, at least four echocardiographic parameters related with diastolic function improved accompanied by decrease in BNP-32 in tadalafil use. Although increasing cGMP, tadalafil did not change endothelial function or nitrites. There were no changes in those parameters after placebo. The current findings suggest that tadalafil improves LV relaxation through direct effects PDE-5-mediated in the cardiomyocytes with potential benefit as an adjunct to treat symptomatic subjects with LVDD such as RHTN patients.
Resumo:
Resistant hypertension (RHTN) includes patients with controlled blood pressure (BP) (CRHTN) and uncontrolled BP (UCRHTN). In fact, RHTN patients are more likely to have target organ damage (TOD), and resistin, leptin and adiponectin may affect BP control in these subjects. We assessed the relationship between adipokines levels and arterial stiffness, left ventricular hypertrophy (LVH) and microalbuminuria (MA). This cross-sectional study included CRHTN (n=51) and UCRHTN (n=38) patients for evaluating body mass index, ambulatory blood pressure monitoring, plasma adiponectin, leptin and resistin concentrations, pulse wave velocity (PWV), MA and echocardiography. Leptin and resistin levels were higher in UCRHTN, whereas adiponectin levels were lower in this same subgroup. Similarly, arterial stiffness, LVH and MA were higher in UCRHTN subgroup. Adiponectin levels negatively correlated with PWV (r=-0.42, P<0.01), and MA (r=-0.48, P<0.01) only in UCRHTN. Leptin was positively correlated with PWV (r=0.37, P=0.02) in UCRHTN subgroup, whereas resistin was not correlated with TOD in both subgroups. Adiponectin is associated with arterial stiffness and renal injury in UCRHTN patients, whereas leptin is associated with arterial stiffness in the same subgroup. Taken together, our results showed that those adipokines may contribute to vascular and renal damage in UCRHTN patients.
Resumo:
In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.
Resumo:
Increased levels of inflammatory biomarkers such as interleukin-6 (IL-6), 10 (IL-10), 1β (IL-1β), tumor necrosis factor-α (TNF-α) high-sensitivity C-reactive protein (hs-CRP) are associated with arterial stiffness in hypertension. Indeed, resistant hypertension (RHTN) leads to unfavorable prognosis attributed to poor blood pressure (BP) control and target organ damage. This study evaluated the potential impact of inflammatory biomarkers on arterial stiffness in RHTN. In this cross-sectional study, 32 RHTN, 20 mild hypertensive (HTN) and 20 normotensive (NT) patients were subjected to office BP and arterial stiffness measurements assessed by pulse wave velocity (PWV). Inflammatory biomarkers were measured in plasma samples. PWV was increased in RHTN compared with HTN and NT (p < 0.05). TNF-α levels were significantly higher in RHTN and HTN than NT patients. No differences in IL-6 levels were observed. RHTN patients had a higher frequency of subjects with increased levels of IL-10 and IL-1β compared with HTN and NT patients. Finally, IL-1β was independently associated with PWV (p < 0.001; R(2) = 0.5; β = 0.077). RHTN subjects have higher levels of inflammatory cytokines (TNF-α, IL-1β and IL-10) as well as increased arterial stiffness, and detectable IL-1β levels are associated arterial stiffness. These findings suggest that inflammation plays a possible role in the pathophysiology of RHTN.
Resumo:
This study investigated the presence of the Treponema species in longstanding endodontic retreatment-resistant lesions of teeth with apical periodontitis, the association of this species with clinical/radiographic features, and the association among the different target species. Microbial samples of apical lesions were collected from twenty-five adult patients referred to endodontic surgery after unsuccessful root canal retreatment. Nested-PCR and conventional PCR were used for Treponema detection. Twenty-three periradicular tissue samples showed detectable levels of bacterial DNA. Treponema species were detected in 28% (7/25) of the cases. The most frequently detected species were T. socranskii (6/25), followed by T. maltophilum (3/25), T. amylovorum (3/25), T. lecithinolyticum (3/25), T. denticola (3/25), T. pectinovorum (2/25) and T. medium (2/25). T. vicentii was not detected in any sample. Positive statistical association was found between T. socranskii and T. denticola, and between T. maltophilum and T. lecithinolyticum . No association was detected between the presence of any target microorganism and the clinical or radiographic features. Treponema spp. are present, in a low percentage, in longstanding apical lesions from teeth with endodontic retreatment failure.
Resumo:
Hypertension is the most prevalent and significant modifiable risk factor for coronary heart disease. A portion of patients with uncontrolled hypertension are considered to have resistant hypertension (RHTN). Myocardial ischemia incidence increases along with blood pressure (BP) levels. However, the prevalence of myocardial ischemia in patients with RHTN, as well as the factors associated with it, is unknown. We enrolled 129 patients with true RHTN regularly followed in our specialty hypertension clinic and evaluated then by resting and dipyridamole pharmacological stress myocardial perfusion scintigraphy. Patients were then divided into 2 groups: those with (I-RHTN; n = 36) and those without (NI-RHTN; n = 93) myocardial ischemia. Echocardiography, 24-hour ambulatory BP monitoring (ABPM), and flow mediated dilation (FMD) were also evaluated. Thirty six (28%) patients had myocardial ischemia. There was no difference between groups regarding age, sex, biochemical parameters, office, and 24-hour ABPM levels. Patients in the I-RHTN group were more likely diabetic (31% vs. 11%; P < 0.05) and obese (75% vs. 40%; P < 0.001). Adjusting for age and body mass index, multiple logistic regression showed that diabetes (odds ratio (OR) = 6.5; 95% confidence interval (CI) = 1.06-40.14; P = 0.04), FMD (OR = 0.18; 95% CI = 0.07-0.41; P < 0.001), heart rate (OR = 1.23; 95% CI = 1.11-1.36; P < 0.001), left ventricular mass index (OR = 1.02; 95% CI = 1.01-1.04; P = 0.04), and microalbuminuria (OR = 1.02; 95% CI = 1.01-1.04; P = 0.002) were independent predictors of ischemia. In conclusion, there is a high prevalence of myocardial ischemia in patients with RHTN. Increased microalbuminuria, heart rate, endothelial dysfunction, and left ventricular mass can be useful to guide the investigation for myocardial ischemia in these high risk patients.
Resumo:
Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.