917 resultados para Multi-user MIMO
Resumo:
In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.
Resumo:
Multi-resolution modelling has become essential as modern 3D applications demand 3D objects with higher LODs (LOD). Multi-modal devices such as PDAs and UMPCs do not have sufficient resources to handle the original 3D objects. The increased usage of collaborative applications has created many challenges for remote manipulation working with 3D objects of different quality. This paper studies how we can improve multi-resolution techniques by performing multiedge decimation and using annotative commands. It also investigates how devices with poorer quality 3D object can participate in collaborative actions.
Resumo:
Cooperative collision warning system for road vehicles, enabled by recent advances in positioning systems and wireless communication technologies, can potentially reduce traffic accident significantly. To improve the system, we propose a graph model to represent interactions between multiple road vehicles in a specific region and at a specific time. Given a list of vehicles in vicinity, we can generate the interaction graph using several rules that consider vehicle's properties such as position, speed, heading, etc. Safety applications can use the model to improve emergency warning accuracy and optimize wireless channel usage. The model allows us to develop some congestion control strategies for an efficient multi-hop broadcast protocol.
Resumo:
Background Diagnosis and treatment of cancer can contribute to psychological distress and anxiety amongst patients. Evidence indicates that information giving can be beneficial in reducing patient anxiety, so oncology specific information may have a major impact on this patient group. This study investigates the effects of an orientation program on levels of anxiety and self-efficacy amongst newly registered cancer patients who are about to undergo chemotherapy and/or radiation therapy in the cancer care centre of a large tertiary Australian hospital. Methods The concept of interventions for orienting new cancer patients needs revisiting due to the dynamic health care system. Historically, most orientation programs at this cancer centre were conducted by one nurse. A randomised controlled trial has been designed to test the effectiveness of an orientation program with bundled interventions; a face-to-face program which includes introduction to the hospital facilities, introduction to the multi-disciplinary team and an overview of treatment side effects and self care strategies. The aim is to orientate patients to the cancer centre and to meet the health care team. We hypothesize that patients who receive this orientation will experience lower levels of anxiety and distress, and a higher level of self-efficacy. Discussion An orientation program is a common health care service provided by cancer care centres for new cancer patients. Such programs aim to give information to patients at the beginning of their encounter at a cancer care centre. It is clear in the literature that interventions that aim to improve self-efficacy in patients may demonstrate potential improvement in health outcomes. Yet, evidence on the effects of orientation programs for cancer patients on self-efficacy remains scarce, particularly with respect to the use of multidisciplinary team members. This paper presents the design of a randomised controlled trial that will evaluate the effects and feasibility of a multidisciplinary orientation program for new cancer patients.
Resumo:
The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.
Resumo:
One of the ways in which university departments and faculties can enhance the quality of learning and assessment is to develop a ‘well thought out criterion‐referenced assessment system’ (Biggs, 2003, p. 271). In designing undergraduate degrees (courses) this entails making decisions about the levelling of expectations across different years through devising objectives and their corresponding criteria and standards: a process of alignment analogous to what happens in unit (subject) design. These decisions about levelling have important repercussions in terms of supporting students’ work‐related learning, especially in relation to their ability to cope with the increasing cognitive and skill demands made on them as they progress through their studies. They also affect the accountability of teacher judgments of students’ responses to assessment tasks, achievement of unit objectives and, ultimately, whether students are awarded their degrees and are sufficiently prepared for the world of work. Research reveals that this decision‐making process is rarely underpinned by an explicit educational rationale (Morgan et al, 2002). The decision to implement criterion referenced assessment in an undergraduate microbiology degree was the impetus for developing such a rationale because of the implications for alignment, and therefore ‘levelling’ of expectations across different years of the degree. This paper provides supporting evidence for a multi‐pronged approach to levelling, through backward mapping of two revised units (foundation and exit year). This approach adheres to the principles of alignment while combining a work‐related approach (via industry input) with the blended disciplinary and learner‐centred approaches proposed by Morgan et al. (2002). It is suggested that this multi‐pronged approach has the potential for making expectations, especially work‐related ones across different year levels of degrees, more explicit to students and future employers.
Resumo:
Classical negotiation models are weak in supporting real-world business negotiations because these models often assume that the preference information of each negotiator is made public. Although parametric learning methods have been proposed for acquiring the preference information of negotiation opponents, these methods suffer from the strong assumptions about the specific utility function and negotiation mechanism employed by the opponents. Consequently, it is difficult to apply these learning methods to the heterogeneous negotiation agents participating in e‑marketplaces. This paper illustrates the design, development, and evaluation of a nonparametric negotiation knowledge discovery method which is underpinned by the well-known Bayesian learning paradigm. According to our empirical testing, the novel knowledge discovery method can speed up the negotiation processes while maintaining negotiation effectiveness. To the best of our knowledge, this is the first nonparametric negotiation knowledge discovery method developed and evaluated in the context of multi-issue bargaining over e‑marketplaces.
Resumo:
This article describes the development and validation of a multi-dimensional scale for measuring managers’ perceptions of the range of factors that routinely guide their decision-making processes. An instrument for identifying managerial ethical profiles (MEP) is developed by measuring the perceived role of different ethical principles in the decision-making of managers. Evidence as to the validity of the multidimensionality of the ethical scale is provided, based on the comparative assessment of different models for managerial ethical decision-making. Confirmatory Factor Analysis (CFA) supported a eight-factor model including two factors for each of the main four schools of moral philosophy. Future research needs and the value of this measure to business ethics are discussed.
Resumo:
This paper reports the application of multicriteria decision making techniques, PROMETHEE and GAIA, and receptor models, PCA/APCS and PMF, to data from an air monitoring site located on the campus of Queensland University of Technology in Brisbane, Australia and operated by Queensland Environmental Protection Agency (QEPA). The data consisted of the concentrations of 21 chemical species and meteorological data collected between 1995 and 2003. PROMETHEE/GAIA separated the samples into those collected when leaded and unleaded petrol were used to power vehicles in the region. The number and source profiles of the factors obtained from PCA/APCS and PMF analyses were compared. There are noticeable differences in the outcomes possibly because of the non-negative constraints imposed on the PMF analysis. While PCA/APCS identified 6 sources, PMF reduced the data to 9 factors. Each factor had distinctive compositions that suggested that motor vehicle emissions, controlled burning of forests, secondary sulphate, sea salt and road dust/soil were the most important sources of fine particulate matter at the site. The most plausible locations of the sources were identified by combining the results obtained from the receptor models with meteorological data. The study demonstrated the potential benefits of combining results from multi-criteria decision making analysis with those from receptor models in order to gain insights into information that could enhance the development of air pollution control measures.
Resumo:
This paper reports findings from a study of user behaviours and intentions towards online news and information in Australia, undertaken by the Queensland University of Technology Creative Industries Faculty and the Smart Services Cooperative Research Centre. It has used a literature review, online survey, focus groups and interviews to explore attitudes and behaviours towards online news and information. The literature review on consumer user of online media highlighted emerging technical opportunities, and flagged existing barriers to access experienced by consumers in the Australian digital media sector. The literature review highlighted multiple disconnects between consumer interests in online news and their ability to fulfil them. This presents an opportunity for news entities to appraise and resolve. Doing so may enhance their service offering, attract consumers and improve loyalty. These themes were further explored by the survey. The survey results revealed three typologies of user, described as ‘convenience’, ‘loyal’ and ‘customising’. Convenience users tend to access news by default, for example when they log out of email. Loyal users seek out a trusted brand such as mainstream news mastheads. Customising users tend to tailor news to their preferences, and be the first to use leading edge media. Respondents to the survey were then invited to participate in focus groups, which aimed to test the survey results. Consumer perceptions and attitudes are important factors in progression towards an information economy, because ultimately consumers are customers. By segmenting the online news market according to customer typology, media providers may identify new opportunities to attract and retain customers.
Resumo:
Tzeng et al. proposed a new threshold multi-proxy multi-signature scheme with threshold verification. In their scheme, a subset of original signers authenticates a designated proxy group to sign on behalf of the original group. A message m has to be signed by a subset of proxy signers who can represent the proxy group. Then, the proxy signature is sent to the verifier group. A subset of verifiers in the verifier group can also represent the group to authenticate the proxy signature. Subsequently, there are two improved schemes to eliminate the security leak of Tzeng et al.’s scheme. In this paper, we have pointed out the security leakage of the three schemes and further proposed a novel threshold multi-proxy multi-signature scheme with threshold verification.
Resumo:
Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.
Resumo:
Association rule mining has made many advances in the area of knowledge discovery. However, the quality of the discovered association rules is a big concern and has drawn more and more attention recently. One problem with the quality of the discovered association rules is the huge size of the extracted rule set. Often for a dataset, a huge number of rules can be extracted, but many of them can be redundant to other rules and thus useless in practice. Mining non-redundant rules is a promising approach to solve this problem. In this paper, we firstly propose a definition for redundancy; then we propose a concise representation called Reliable basis for representing non-redundant association rules for both exact rules and approximate rules. An important contribution of this paper is that we propose to use the certainty factor as the criteria to measure the strength of the discovered association rules. With the criteria, we can determine the boundary between redundancy and non-redundancy to ensure eliminating as many redundant rules as possible without reducing the inference capacity of and the belief to the remaining extracted non-redundant rules. We prove that the redundancy elimination based on the proposed Reliable basis does not reduce the belief to the extracted rules. We also prove that all association rules can be deduced from the Reliable basis. Therefore the Reliable basis is a lossless representation of association rules. Experimental results show that the proposed Reliable basis can significantly reduce the number of extracted rules.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
For many, an interest in Human-Computer Interaction is equivalent to an interest in usability. However, using computers is only one way of relating to them, and only one topic from which we can learn about interactions between people and technology. Here, we focus on not using computers – ways not to use them, aspects of not using them, what not using them might mean, and what we might learn by examining non-use as seriously as we examine use.