983 resultados para Methods: numerical
Resumo:
Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.
Resumo:
Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.
Resumo:
Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.
Resumo:
Bibliography: p. 85-87.
Resumo:
"UILU-ENG 77 1714."
Resumo:
Includes bibliographical references.
Resumo:
"UILU-ENG 80 1701."
Resumo:
"COO-2383-0035."
Resumo:
"COO-1469-0164."
Resumo:
Thesis (M.S.)--University of Illinois.
Resumo:
Reports 2 and 3 by E. Isaacson, J. J. Stoker, and A. Troesch.
Resumo:
"February 1985."
Resumo:
Mode of access: Internet.
Resumo:
Translation of 2 articles from the Russian journal.