982 resultados para Mathematical physics.
Resumo:
In spite of the movement to turn political science into a real science, various mathematical methods that are now the staples of physics, biology, and even economics are thoroughly uncommon in political science, especially the study of civil war. This study seeks to apply such methods - specifically, ordinary differential equations (ODEs) - to model civil war based on what one might dub the capabilities school of thought, which roughly states that civil wars end only when one side’s ability to make war falls far enough to make peace truly attractive. I construct several different ODE-based models and then test them all to see which best predicts the instantaneous capabilities of both sides of the Sri Lankan civil war in the period from 1990 to 1994 given parameters and initial conditions. The model that the tests declare most accurate gives very accurate predictions of state military capabilities and reasonable short term predictions of cumulative deaths. Analysis of the model reveals the scale of the importance of rebel finances to the sustainability of insurgency, most notably that the number of troops required to put down the Tamil Tigers is reduced by nearly a full order of magnitude when Tiger foreign funding is stopped. The study thus demonstrates that accurate foresight may come of relatively simple dynamical models, and implies the great potential of advanced and currently unconventional non-statistical mathematical methods in political science.
Resumo:
Manuscript notebook, possibly kept by Harvard students, containing 17th century English transcriptions of arithmetic and geometry texts, one of which is dated 1689-1690; 18th century transcriptions from John Ward’s “The Young Mathematician’s Guide”; and notes on physics lectures delivered by John Winthrop, the Hollis Professor of Mathematics and Natural Philosophy at Harvard from 1738 to 1779. The notebook also contains 18th century reading notes on Henry VIII, Tudor succession, and English history from Daniel Neal’s “The History of the Puritans” and David Hume’s “History of England,” and notes on Ancient history, taken mainly from Charles Rollin’s “The Ancient History of the Egyptians, Carthaginians, Assyrians, Babylonians, Medes and Persians, Macedonians and Grecians.” Additionally included are an excerpt from Plutarch’s “Lives” and transcriptions of three articles from “The Gentleman’s Magazine, and Historical Chronicle,” published in 1769: “A Critique on the Works of Ovid”; a book review of “A New Voyage to the West-Indies”; and “Genuine Anecdotes of Celebrated Writers, &.” The flyleaf contains the inscription “Semper boni aliquid operis facito ut diabolus te semper inveniat occupatum,” a variation on a quote of Saint Jerome that translates approximately as “Always good to do some work so that the devil may always find you occupied.” In the seventeenth and eighteenth centuries, Harvard College undergraduates often copied academic texts and lecture notes into personal notebooks in place of printed textbooks. Winthrop used Ward’s textbook in his class, while the books of Hume, Neal, and Rollin were used in history courses taught at Harvard in the 18th century.
Resumo:
Vol III. Elasticity, heat, electro-magnetism; IV. Hydrodynamics and general dynamics; V. Thermodynamics, cosmical and geological physics, molecular and crystalline theory, electrodynamics; VI. Voltaic theory, radioactivity, electrons, navigation and tides, miscellaneous.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.
Resumo:
Low-density parity-check codes with irregular constructions have recently been shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulation results. We compare the performance of irregular codes with that of regular codes and discuss the factors that contribute to the improvement in performance.
Resumo:
Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications. © 2013 IOP Publishing Ltd.
Resumo:
We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also discussed. © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Resumo:
Peer reviewed