968 resultados para MACROPHAGE ACTIVATION PHENOTYPE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously observed in vitro that some stromal proteinases (MMP- 2, MT1-MMP) were expressed or activated by invasive carcinoma cell lines exhibiting mesenchymal features, presumably acquired through an epithelial to mesenchymal transition (EMT). To examine the potential contribution of c- ets-1 to this phenotype, we have compared here the expression of c-ets-1 with invasiveness in vitro and expression of vimentin, E-cadherin, uPA, MMP-1 and MMP-3 in a panel of human breast cancer cell lines. Our results clearly demonstrate an association between c-ets-1 expression and the invasive, EMT- derived phenotype, which is typified by the expression of vimentin and the lack of E-cadherin. While absent from the two non-invasive, vimentin-negative cell lines, c-ets-1 was abundantly expressed in all the four vimentin- positive lines. However, we could not find a clear quantitative or qualitative relationship between the expression of c-ets-1 and the three proteinases known to he regulated by c-ets-1, except that when they were expressed, it was only in the invasive c-ets-1-positive lines. UPA mRNAs were found in three of the four vimentin-positive lines, MMP-1 in two of the four, and MMP-3 could not be detected in any of the cell lines. Intriguingly, MDA- MB-435 cells, which exhibit the highest metastatic potential of these cell lines in nude mice, expressed vimentin and c-ets-1, but lacked expression of these three proteinases, at least under the culture conditions employed. Taken together, our results show that c-ets-1 expression is associated with an invasive, EMT-derived phenotype in breast cancer cells, although it is apparently not sufficient to ensure the expression of uPA, MMP-1 or MMP-3, in the vimentin-positive cells. Such proteases regulation is undoubtedly qualified by the cellular context. This study therefore advances our understanding of the molecular regulation of invasiveness in EMT-associated carcinoma progression, and suggests that c-ets-1 may contribute to the invasive phenotype in carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that human breast carcinoma (HBC) cell lines expressing the mesenchymal intermediate filament protein vimentin (VIM+) are highly invasive in vitro, and highly metastatic in nude mice when compared to their VIM- counterparts. Since only VIM+ cell lines can be induced to activate matrix metalloproteinase-2 (MMP-2) upon stimulation with Concanavalin A (Con A), we have examined here membrane type 1 MMP (MT1-MMP), a cell surface activator of MMP-2. Northern analysis reveals baseline expression of MT1-MMP in five of the six VIM+ cell lines studied (MDA-MB-231, MDA-MB-435, BT-549, Hs578T, MCF-7(ADR)), each of which showed variable activation of exogenous MMP-2 after treatment with Con A. In contrast, the four VIM-, poorly invasive HBC cell lines studied (MCF-7, T47D, MDA-MB 468, ZR-75-1) lacked baseline MT1-MMP mRNA expression, and showed no induction of either MT1-MMP expression or MMP-2-activation with Con A. Such differential MT1-MMP expression was confirmed in vivo using in situ hybridization analysis of nude mouse tumor xenografts of representative cell lines. Western analysis of the MDA-MB-231 cells revealed baseline membrane expression of a 60 kDa species, which was strongly induced by Con A treatment along with a weaker band co-migrating with that from MT1-MMP-transfected COS-1 cells (63 kDa), presumably representing latent MT1-MMP. MT1-MMP immunofluorescence strongly decorated Con A-stimulated MDA-MB-231 cells in a manner consistent with membranous staining, but did not decorate the unstimulated MDA-MB-231 cells or MCF-7 cells under either condition. Collectively, the results suggest the constitutive production of active MT1-MMP which is unavailable for either MMP-2 activation or immuno-decoration until Con A treatment. Since VIM expression arises by virtue of the so-called epithelial to mesenchymal transition (EMT) in invasive embryonic epithelia, we propose that this represents a major metastasis mechanism in breast carcinomas. MT1-MMP on the surface of such 'fibroblastoid' carcinoma cells may mediate a paracrine loop for the utilization of stromally produced MMP-2, and contribute to the poorer survival associated with VIM+ breast carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-range cross-ring reactions occur when (M - H)(-) ions of methoxy- and ethoxy-C6H4-(-)NCOR (R = H, CH3, C6H5 and CH3O) are subjected to collisional activation, These reactions are generally minor processes: a particular example is the cross-ring elimination p-C2H5O-C6H4-(NCOCH3)-N-- --> [CH3-(p-C2H5O-C6H4-NCO)] --> p-(O--)-C6H4-NCO + C2H4 + CH4. Major processes of these (M - H)(-) ions involve (i) losses of radicals to form stabilised radical anions, e.g. (a) loss of a ring H-. or (b) CH3. (or C2H5.) from the alkoxy group, and (ii) proximity effects when the two substituents are ortho, e.g. loss of CH3OH from o-CH3O-C6H4-(NCHO)-N-- yields deprotonated benzoxazole. Another fragmentation of an arylmethoxyl anion involves loss of CH2O. It is proposed that losses of CH2O are initiated by anionic centres but the actual mechanisms in the cases studied depend upon the substitution pattern of the methoxyanilide: o- and p-methoxyanilides may undergo ipso proton transfer/elimination reactions, whereas the in-analogues undergo proton transfer reactions to yield an o-CH3O substituted aryl carbanion followed by proton transfer from CH3O to the carbanion site with concomitant loss of CH2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collision-induced dissociation ( CID) mass spectra of the \[M-H](-) anions of methyl, ethyl, and tert-butyl hydroperoxides have been measured over a range of collision energies in a flowing afterglow - selected ion flow tube (FA-SIFT) mass spectrometer. Activation of the CH3OO- anion is found to give predominantly HO- fragment anions whilst CH3CH2OO- and (CH3)(3)COO- produce HOO- as the major ionic fragment. These results, and other minor fragmentation pathways, can be rationalized in terms of unimolecular rearrangement of the activated anions with subsequent decomposition. The rearrangement reactions occur via initial abstraction of a proton from the alpha-carbon in the case of CH3OO- or the beta-carbon for CH3CH2OO- and (CH3)(3)COO-. Electronic structure calculations suggest that for the CH3CH2OO- anion, which can theoretically undergo both alpha- and beta-proton abstraction, the latter pathway, resulting in HOO- + CH2CH2, is energetically preferred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloprotemases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mENA levels. Zyniographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-Wa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloprotemnases (83 kDa and 110 Wa and in an activation of the 72-Wa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation, lmmunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 Wa, 83 Wa, and 110 Wa and a triton-insoluble gelatinase of 225 Wa, These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human skin fibroblasts were cultured long-term in the presence of ascorbic acid to allow formation of a three-dimensional collagen matrix, and the effects of this on activation of secreted matrix metalloproteinase-2 (MMP-2) were examined. Accumulation of collagen over time correlated with increased levels of both mature MMP-2 and cell-associated membrane type 1-MMP (MT1-MMP), and subsequently increased mRNA levels for MT1-MMP, providing temporal resolution of the "nontranscriptional" and "transcriptional" effects of collagen on MT-1MMP functionality. MMP-2 activation by these cultures was blocked by inhibitors of prolyl-4-hydroxylase, or when fibroblasts derived from the collagen α1(I) gene-deficient Mov-13 mouse were used. MMP-2 activation by the Mov-13 fibroblasts was rescued by transfection of a full-length α1(I) collagen cDNA, and to our surprise, also by transfection with an α1(I) collagen cDNA carrying a mutation at the C-proteinase cleavage, which almost abrogated fibrillogenesis. Although studies with ascorbate-cultured MT1-MMP-/- fibroblasts showed that MT1-MMP played a significant role in the collagen-induced MMP-2 activation, a residual MT1-MMP-independent activation of MMP-2 was seen which resembled the level of MMP-2 activation persisting when wild-type fibroblasts were cultured in the presence of both ascorbic acid and MMP inhibitors. We were also unable to block this residual activation with inhibitors specific for serinyl, aspartyl, or cysteinyl enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized the LCC15-MB cell line which was recently derived from a breast carcinoma metastasis resected from the femur of a 29-year-old woman. LCC15-MB cells are vimentin (VIM) positive, exhibit a stellate morphology in routine cell culture, and form penetrating colonies when embedded in three-dimensional gels of Matrigel or fibrillar collagen. They show high levels of activity in the Boyden chamber chemomigration and chemoinvasion assays, and like other invasive human breast cancer (HBC) cell lines, LCC15-MB cells activate matrix-metalloproteinase-2 in response to treatment with concanavalin A. In addition, these cells are tumorigenic when implanted subcutaneously in nude mice and recolonize bone after arterial injection. Interestingly, both the primary lesion and the bone metastasis from which LCC15-MB were derived, as well as the resultant cell line, abundantly express the bone matrix protein osteopontin (OPN). OPN is also expressed by the highly metastatic MDA-MB-435 cells, but not other invasive or noninvasive HBC cell lines. Expression of OPN is retained in the subcutaneous xenograft and intraosseous metastases of LCC15-MB as detected by immunohistochemistry. Both VIM and OPN expression have been associated with breast cancer invasion and metastasis, and their expression by the LCC15-MB cell line is consistent with its derivation from a highly aggressive breast cancer. These cells provide a useful model for studying molecular mechanisms important for breast cancer metastasis to bone and, in particular, the implication(s) of OPN and VIM expression in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of bovine interphotoreceptor matrix and conditioned medium from human Y-79 retinoblastoma cells by gelatin SDS-PAGE zymography reveals abundant activity of a 72-kDa M(r) gelatinase. The 72-kDa gelatinase from either source is inhibited by EDTA but not aprotinin or NEM, indicating that it is a metalloproteinase (MMP). The 72-kDa MMP is converted to a 62-kDa species with APMA treatment after gelatin sepharose affinity purification typical of previously described gelatinase MMP-2. The latent 72-kDa gelatinase from either bovine IPM or Y-79 media autoactivates without APMA in the presence of calcium and zinc after 72 hr at 37°C, producing a fully active mixture of proteinase species, 50 (48 in Y-79 medium), 38 and 35 kDa in size. The presence of inhibitory activity was examined in both whole bovine IPM and IPM fractions separated by SDS-PAGE. Whole IPM inhibited gelatinolytic activity of autoactivated Y-79-derived MMP in a dose-dependent manner. Inhibitory activities are observed in two protein fractions of 27-42 and 20-25 kDa. Western blots using antibodies to human tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and -2) reveal the presence of two TIMP-1-like proteins at 21 and 29 kDa in inhibitory fractions of the bovine IPM. TIMP-2 was not detected in the inhibitory IPM fractions, consistent with the observed autoactivation of bovine IPM 72-kDa gelatinase. Potential roles for this IPM MMP-TIMP system include physiologic remodelling of the neural retina-RPE cell interface and digestion of shed rod outer segment as well as pathological processes such as retinal detachment, PE cell migration, neovascularization and tumor progression. Cultured Y-79 cells appear to be a good model for studying the production and regulation of this proteinase system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement membranes serve as significant barriers to the passage of tumor cells but ones which metastatic cells can pass. This involves the production of a cascade of proteases leading to the activation of a specific collagenase that degrades the unique collagen network in basement membrane. Breast cancer cells, when estrogen dependent, show a requirement for estrogen for invasive activity. However, when these cells progress to an estrogen independent state and increased malignancy, they express an invasive phenotype constitutively. Studies with various anti-estrogens suggest that these responses are mediated via the estrogen receptor. Anti-estrogens lacking agonist activity suppress invasiveness as well as growth of the breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant percentage of human breast cancer (HBC) is dependent upon the ovarian hormone estrogen for its onset and progression. The presence or lack of estrogen receptors (ERs) in human breast cancer is an important determinant both of prognosis and of choice of treatment - a poorer prognosis being associated with ER–ve disease. Cell lines established from human breast cancer provide models for breast cancer in various stages of progression (Engel & Young 1978). When grown as tumors in athymic nude mice, these lines represent the major in vivo experimental model for HBC studies (Brünner et al 1987). The ease of both in vitro and in vivo maintenance, the human derivation of the tissue, and the similarities in plasma estrogen levels between ovariectomized nude mice and postmenopausal women (Seibert et al. 1983, Brünner et al. 1986), make the growth of human breast cancer cell lines in nude mice an attractive...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tissue inhibitor of metalloproteinases-2 (TIMP-2)-independent mechanism for generating the first activational cleavage of pro-matrix metalloproteinase-2 (MMP-2) was identified in membrane type-1 MMP (MT1-MMP)-transfected MCF-7 cells and confirmed in TIMP-2-deficient fibroblasts. In contrast, the second MMP-2-activational step was found to be TIMP-2 dependent in both systems. MMP-2 hemopexin C-terminal domain was found to be critical for the first step processing, confirming a need for membrane tethering. We propose that the intermediate species of MMP-2 forms the well-established trimolecular complex (MT1-MMP/TIMP-2/MMP-2) for further TIMP-2-dependent autocatalytic cleavage to the fully active species. This alternate mechanism may supplement the traditional TIMP-2-mediated first step mechanism.