997 resultados para LEUKOTRIENE-B4 PRODUCES HYPERALGESIA
Resumo:
Endothelin-1 (ET-1) and urotensin-II (U-II) are the most potent constrictors of human vessels. Although the cavernosal tissue is highly responsive to ET-1, no information exists on the effects of U-II on cavernosal function. The aim of this study was to characterize ET-1 and U-II responses in corpora cavernosa from rats and mice. Male Wistar rats and C57/BL6 mice were used at 13 weeks. Cumulative concentration-response curves to ET-1, U-II, and IRL-1620, an ET(B) agonist, were performed. ET-1 increased force generation in cavernosal strips from mice and rats, but no response to U-II was observed in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME), or in strips prestimulated with 20 mM KCI. IRL-1620 did not induce cavernosal contraction even in presence of L-NAME, but induced a cavernosal relaxation that was greater in rats than mice. No relaxation responses to U-II were observed in cavernosal strips precontracted with phenylephrine. mRNA expression of ET-1, ET(A), ET(B), and U-II receptors, but not U-II was observed in cavernosal strips. ET-1, via ET(A) receptors activation, causes contractile responses in cavernosal strips from rats and mice, whereas ET(B) receptor activation produces relaxation. Although the cavernosal tissue expresses U-II receptors, U-II does not induce contractile responses in corpora cavernosa from mice or rats. J Am Soc Hypertens 2008;2(6): 439-447. Published by Elsevier Inc. on behalf of the American Society of Hypertension.
Resumo:
Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.
Resumo:
Hydrogen Sulfide (H2S) is an endogenous gas involved in several biological functions, including modulation of nociception. However, the mechanisms involved in such modulation are not fully elucidated. The present Study demonstrated that the pretreatment of mice with PAG, a H2S synthesis inhibitor, reduced LPS-induced mechanical paw hypernociception. This inhibition of hypernociception was associated with the prevention of neutrophil recruitment to the plantar tissue. Conversely, PAG had no effect on LPS-induced production of the hypernociceptive cytokines, TNF-alpha, IL-1 beta and CXCL1/KC and on hypernociception induced by PGE(2), a directly acting hypernociceptive mediator. In contrast with the pro-nociceptive role of endogenous H2S. systemic administration of NaHS, a H2S donor, reduced LPS-induced mechanical hypernociception in mice. Moreover, this treatment inhibited mechanical hypernociception induced by PGE(2), suggesting a direct effect of H2S on nociceptive neurons. The antinociceptive mechanism of exogenous H2S depends on K-(ATP)(+) channels since the inhibition of PGE(2) hypernociception by NaHS was prevented by glibenclamide (K-(ATP)(+) channel blocker). Finally, NaHS did not alter the thermal nociceptive threshold in the hot-plate test, confirming that its effect is mainly peripheral. Taken together, these results suggest that H2S has a dual role in inflammatory hypernociception: 1. an endogenous pro-nociceptive effect due to up-regulation of neutrophil migration. and 2. an antinociceptive effect by direct blockade of nociceptor sensitization modulating K-(ATP)(+) channels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
There are evidences that targeting IL-18 might be beneficial to inhibit inflammatory symptoms, including hypernociception (decrease in nociceptive threshold). The mechanism of IL-18 mechanical hypernociception depends on endothelin in rats and mice. However, the role of IL-18 in overt pain-like behaviour remains undetermined. Therefore, we addressed the role of IL-18 in writhing response induced by intraperitoneal (i.p.) injection of phenyl-p-benzoquinone (PBQ) and acetic acid in mice. Firstly, it was detected that PBQ and acetic acid i.p. injection induced a dose-dependent number of writhes in Balb/c mice. Subsequently, it was observed that the PBQ- but not the acetic acid-induced writhes were diminished in IL-18 deficient ((-/-)) mice. Therefore, considering that IFN-gamma, endothelin and prostanoids mediate IL-18-induced mechanical hypernociception, we also investigated the role of these mediators in the same model of writhing response in which IL-18 participates. It was noticed that PBQ-induced writhes were diminished in IFN-gamma(-/-) mice and by the treatment with bosentan (mixed enclothelin ETA/ETB receptor antagonist), BQ 123 (cyclo[DTrp-DAsp-Pro-DVal-Leu], selective enclothelin ETA receptor antagonist), BQ 788 (N-cys-2,6-dimethylpiperidinocarbonyl-L-methylleucyl-D-1 -methoxycarboyl-D-norleucine, selective endothelin ETB receptor antagonist) or indomethacin (cycloxigenase inhibitor). Thus, IL-18, IFN-gamma, endothelin acting on endothelin ETA and ETB receptors, and prostanoids mediate PBQ-induced writhing response in mice. To conclude, these results further advance the understanding of the physiopathology of overt pain-like behaviour, and suggest for the first time a role for IL-18 in writhing response in mice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Resumo:
The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
IL-33, a new member of the IL-1 family, signals through its receptor ST2 and induces T helper 2 (Th2) cytokine synthesis and mediates inflammatory response. We have investigated the role of IL-33 in antigen-induced hypernociception. Recombinant IL-33 induced cutaneous and articular mechanical hype rn ociception in a time- and dose-dependent manner. The hypernociception was inhibited by soluble (s) ST2 (a decoy receptor of IL-33), IL-1 receptor antagonist (IL-1ra), bosentan [a dual endothelin (ET)(A)/ETB receptor antagonist], clazosentan (an ETA receptor antagonist), or indomethacin (a cyclooxygenase inhibitor). IL-33 induced hypernociception in IL-18(-/-) mice but not in TNFR1(-/-) or IFN gamma(-/-) mice. The IL-33-induced hypernociception was not affected by blocking IL-15 or sympathetic amines (guanethidine). Furthermore, methylated BSA (mBSA)-induced cutaneous and articular mechanical hypernociception depended on TNFR1 and IFN gamma and was blocked by sST2, IL-1ra, bosentan, clazosentan, and indomethacin. mBSA also induced significant IL-33 and ST2 mRNA expression. Importantly, we showed that mBSA induced hypernociception via the IL-33 -> TNF alpha -> IL-1 beta -> IFN gamma -> ET-1 -> PGE(2) signaling cascade. These results therefore demonstrate that IL-33 is a key mediator of immune inflammatory hype rn ociception normally associated with a Th1 type of response, revealing a hitherto unrecognized function of IL-33 in a key immune pharmacological pathway that may be amenable to therapeutic intervention.
Resumo:
The ability of an individual to sense pain is fundamental for its capacity to adapt to its environment and to avoid damage. The sensation of pain can be enhanced by acute or chronic inflammation. In the present study, we have investigated whether inflammatory pain, as measured by hypernociceptive responses, was modified in the absence of the microbiota. To this end, we evaluated mechanical nociceptive responses induced by a range of inflammatory stimuli in germ-free and conventional mice. Our experiments show that inflammatory hypernociception induced by carrageenan, lipopolysaccharide, TNF-alpha, IL-1 beta, and the chemokine CXCL1 was reduced in germfree mice. In contrast, hypernociception induced by prostaglandins and dopamine was similar in germ-free or conventional mice. Reduction of hypernociception induced by carrageenan was associated with reduced tissue inflammation and could be reversed by reposition of the microbiota or systemic administration of lipopolysaccharide. Significantly, decreased hypernociception in germ-free mice was accompanied by enhanced IL-10 expression upon stimulation and could be reversed by treatment with an anti-IL-10 antibody. Therefore, these results show that contact with commensal microbiota is necessary for mice to develop inflammatory hypernociception. These findings implicate an important role of the interaction between the commensal microbiota and the host in favoring adaptation to environmental stresses, including those that cause pain.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1 beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1 beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1 beta-induced neutrophil migration. The neutrophil migration induced by IL-1 beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1 beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1 beta. The chemotactic activity of the supernatant of IL-1 beta-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1 beta-stimulated mast cells supernatant is due to the presence of IL-1 beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1 beta depends upon LTB4 released by macrophages and upon IL-1 beta and TNF alpha released by mast cells.
Resumo:
Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. Together with this failure, we observed more bacteria in both peritoneal exudates and blood, followed by a reduction in survival rate. Furthermore, neutrophils obtained from severe septic patients displayed a marked reduction in chemotactic response compared with neutrophils from healthy subjects. The mechanisms of neutrophil migration failure are not completely understood. However, it is known that they involve systemic Toll-like receptor activation by bacteria and/or their products and result in excessive levels of circulating cytokines/chemokines. These mediators acting together with LPS stimulate expression of iNOS that produces high amounts of NO, which in turn mediates the failure of neutrophil migration. NO reduced expression of CXCR2 on neutrophils and the levels of adhesion molecules on both endothelial cells and neutrophils. These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.
Resumo:
BACKGROUND AND PURPOSE Lipoxin A(4) (LXA(4)) is a lipid mediator involved in the resolution of inflammation. Increased levels of LXA(4) in synovial fluid and enhanced expression of the formyl peptide receptor 2/lipoxin A(4) receptor (FPR2/ALX) in the synovial tissues of rheumatoid arthritis patients have been reported. Endothelins (ETs) play a pivotal pro-inflammatory role in acute articular inflammatory responses. Here, we evaluated the anti-inflammatory role of LXA(4), during the acute phase of zymosan-induced arthritis, focusing on the modulation of ET-1 expression and its effects. EXPERIMENTAL APPROACH The anti-inflammatory effects of LXA(4), BML-111 (agonist of FPR2/ALX receptors) and acetylsalicylic acid (ASA) pre- and post-treatments were investigated in a murine model of zymosan-induced arthritis. Articular inflammation was assessed by examining knee joint oedema; neutrophil accumulation in synovial cavities; and levels of prepro-ET-1 mRNA, leukotriene (LT)B(4), tumour necrosis factor (TNF)-alpha and the chemokine KC/CXCL1, after stimulation. The direct effect of LXA(4) on ET-1-induced neutrophil activation and chemotaxis was evaluated by shape change and Boyden chamber assays respectively. KEY RESULTS LXA(4), BML-111 and ASA administered as pre- or post-treatment inhibited oedema and neutrophil influx induced by zymosan stimulation. Zymosan-induced preproET-1 mRNA, KC/CXCL1, LTB(4) and TNF-alpha levels were also decreased after LXA(4) pretreatment. In vitro, ET-1-induced neutrophil chemotaxis was inhibited by LXA4 pretreatment. LXA(4) treatment also inhibited ET-1-induced oedema formation and neutrophil influx into mouse knee joints. CONCLUSION AND IMPLICATION LXA(4) exerted anti-inflammatory effects on articular inflammation through a mechanism that involved the inhibition of ET-1 expression and its effects.
Resumo:
IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose-and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1(-/-) mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-alpha, IL-1 beta and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ET(A)/ET(B) antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE(2) production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-alpha, IL-1 beta, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Quercetin (1) is known to have both antioxidant and antinociceptive effects. However, the mechanism involved in its antinociceptive effect is not fully elucidated. Cytokines and reactive oxygen species have been implicated in the cascade of events resulting in inflammatory pain. Therefore, we evaluated the antinociceptive mechanism of 1 focusing on the role of cytokines and Oxidative stress. Intraperitoneal and oral treatments with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid and phenyl-p-benzoquinone and also the second phase of formalin- and carrageenin-induced mechanical hypernociception. Compound I also inhibited the hypernociception induced by cytokines (e.g., TNF alpha and CXCL1), but not by inflammatory mediators that directly sensitize the nociceptor such as PGE(2) and dopamine. On the other hand, 1 reduced carrageenin-induced IL-1 beta production as well as carrageenin-induced decrease of reduced glutathione (GSH) levels. These results suggest that I exerts its analgesic effect by inhibiting pro-nociceptive cytokine production and the oxidative imbalance mediation of inflammatory pain.
Resumo:
Background and purpose: D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the carrageenin paw inflammation model in mice were addressed, focusing on the two mechanisms described above. Experimental approach: Mechanical hyperalgesia (decrease in the nociceptive threshold) was evaluated by the electronic pressure-metre test; cytokine levels were measured by elisa and adenosine was determined by high performance liquid chromatography. Key results: Pretreatment of mice with FBP reduced hyperalgesia induced by intraplantar injection of carrageenin (up to 54%), tumour necrosis factor alpha (40%), interleukin-1 beta (46%), CXCL1 (33%), prostaglandin E(2) (41%) or dopamine (55%). However, FBP treatment did not alter carrageenin-induced cytokine (tumour necrosis factor alpha and interleukin-1 beta) or chemokine (CXCL1) production. On the other hand, the antinociceptive effect of FBP was prevented by systemic and intraplantar treatment with an adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine), suggesting that the FBP effect is mediated by peripheral adenosine acting on A(1) receptors. Giving FBP to mice increased adenosine levels in plasma, and adenosine treatment of paw inflammation presented a similar antinociceptive mechanism to that of FBP. Conclusions and implications: In addition to anti-inflammatory action, FBP also presents an antinociceptive effect upon inflammatory hyperalgesia. Its mechanism of action seems dependent on adenosine production but not on modulation of hyperalgesic cytokine/chemokine production. In turn, adenosine acts peripherally on its A(1) receptor inhibiting hyperalgesia. FBP may have possible therapeutic applications in reducing inflammatory pain.