803 resultados para Insulin-resistance Atherosclerosis
Resumo:
BACKGROUND: In adults, obesity-driven inflammation can lead to increased cardiovascular disease (CVD). However, information regarding childhood obesity and its inflammatory sequelae is less well defined. Serum amyloid-A (SAA) is an inflammatory molecule that rapidly associates with high-density lipoproteins (HDLs) and renders them dysfunctional. Therefore, SAA may be a useful biomarker to identify increased CVD potential in overweight and obese children.
METHODS: Young Hearts 2000 is a cross-sectional cohort study in which 92 children who were obese were matched for age and sex with 92 overweight and 92 lean children. HDL2 and HDL3 (HDL2&3) were isolated from plasma by a three-step rapid-ultracentrifugation procedure. SAA was measured in serum and HDL2&3 by an enzyme-linked immunosorbent assay procedure, and the activities of cholesterol ester transfer protein (CETP) and lecithin cholesteryl acyltransferase (LCAT) were measured by fluorimetric assays.
RESULTS: Trends across the groups indicated that SAA increased in serum and HDL2&3 as BMI increased, as did HDL2-CETP and HDL2-LCAT activities.
CONCLUSION: These results have provided evidence that overweight and obese children are exposed to an inflammatory milieu that impacts the antiatherogenic properties of HDL and that could increase CVD risk. This supports the concept that it is important to target childhood obesity to help minimize future cardiovascular events.
Resumo:
To determine whether polycystic ovary syndrome (PCOS) independently influences oxidative stress and inflammation or if the culprit is the comorbidities of obesity and/or insulin resistance common to this condition.
Resumo:
New-onset diabetes after transplantation is a common complication that reduces recipient survival. Research in renal transplant recipients has suggested that pancreatic ß-cell dysfunction, as opposed to insulin resistance, may be the key pathologic process. In this study, clinical and genetic factors associated with new-onset diabetes after transplantation were identified in a white population. A joint analysis approach, with an initial genome-wide association study in a subset of cases followed by de novo genotyping in the complete case cohort, was implemented to identify single-nucleotide polymorphisms (SNPs) associated with the development of new-onset diabetes after transplantation. Clinical variables associated with the development of diabetes after renal transplantation included older recipient age, female sex, and percentage weight gain within 12 months of transplantation. The genome-wide association study identified 26 SNPs associated with new-onset diabetes after transplantation; this association was validated for eight SNPs (rs10484821, rs7533125, rs2861484, rs11580170, rs2020902, rs1836882, rs198372, and rs4394754) by de novo genotyping. These associations remained significant after multivariate adjustment for clinical variables. Seven of these SNPs are associated with genes implicated in ß-cell apoptosis. These results corroborate recent clinical evidence implicating ß-cell dysfunction in the pathophysiology of new-onset diabetes after transplantation and support the pursuit of therapeutic strategies to protect ß cells in the post-transplant period.
Resumo:
Our review and meta-analysis examined the association between a posteriori–derived dietary patterns (DPs) and risk of type 2 diabetes mellitus. MEDLINE and EMBASE were searched for articles published up to July 2012 and data were extracted by two independent reviewers. Overall, 19 cross-sectional, 12 prospective cohort, and two nested case-control studies were eligible for inclusion. Results from cross-sectional studies reported an inconsistent association between DPs and measures of insulin resistance and/or glucose abnormalities, or prevalence of type 2 diabetes. A meta-analysis was carried out on nine prospective cohort studies that had examined DPs derived by principle component/factor analysis and incidence of type 2 diabetes risk (totaling 309,430 participants and 16,644 incident cases). Multivariate-adjusted odds ratios were combined using a random-effects meta-analysis. Two broad DPs (Healthy/Prudent and Unhealthy/Western) were identified based on food factor loadings published in original studies. Pooled results indicated a 15% lower type 2 diabetes risk for those in the highest category of Healthy/Prudent pattern compared with those in the lowest category (95% CI 0.80 to 0.91; P<0.0001). Compared with the lowest category of Unhealthy/Western DP, those in the highest category had a 41% increased risk of type 2 diabetes (95% CI 1.32 to 1.52; P<0.0001). These results provide evidence that DPs are consistently associated with risk of type 2 diabetes even when other lifestyle factors are controlled for. Thus, greater adherence to a DP characterized by high intakes of fruit, vegetables, and complex carbohydrate and low intakes of refined carbohydrate, processed meat, and fried food may be one strategy that could have a positive influence on the global public health burden of type 2 diabetes.
Resumo:
Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown.
Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses.
Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1).
Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.
Resumo:
Resumo:
CONTEXT: Minority communities are disproportionately affected by diabetes, and minority women are at an increased risk for glucose intolerance (dysglycemia) during pregnancy.
OBJECTIVES: In pregnant American Indian women, the objectives of the study were to use current criteria to estimate the prevalence of first-trimester (Tr1) dysglycemia and second-trimester (Tr2) incidence of gestational diabetes mellitus (GDM) and to explore new candidate measures and identify associated clinical factors.
DESIGN: This was a prospective cohort study. In Tr1 we performed a 75-g, 2-hour oral glucose tolerance test (OGTT) and glycated hemoglobin (HbA1c) to determine the following: fasting insulin; homeostasis model assessment of insulin resistance; serum 1,5-anhydroglucitol; noninvasive skin autofluorescence (SCOUT). We defined dysglycemia by American Diabetes Association and Endocrine Society criteria and as HbA1c of 5.7% or greater. In Tr2 in an available subset, we performed a repeat OGTT and SCOUT.
PARTICIPANTS: Pregnant American Indian women (n = 244 at Tr1; n = 114 at Tr2) participated in the study.
OUTCOMES: The prevalence of dysglycemia at Tr1 and incidence of GDM at Tr2 were measured.
RESULTS: At Tr1, one woman had overt diabetes; 36 (15%) had impaired glucose tolerance (American Diabetes Association criteria and/or abnormal HbA1c) and 59 (24%) had GDM-Tr1 (Endocrine Society criteria). Overall, 74 (30%) had some form of dysglycemia. Associated factors were body mass index, hypertension, waist/hip circumferences, SCOUT score, fasting insulin, and homeostasis model assessment of insulin resistance. At Tr2, 114 of the Tr1 cohort underwent a repeat OGTT and SCOUT, and 26 (23%) had GDM. GDM-Tr2 was associated with increased SCOUT scores (P = .029) and Tr1 body mass index, waist/hip circumferences, diastolic blood pressure, fasting insulin, and triglyceride levels. Overall, dysglycemia at Tr1 and/or Tr2 affected 38% of the women.
CONCLUSIONS: Dysglycemia at some point during pregnancy was common among American Indian women. It was associated with features of insulin resistance and may confer long-term health risks for mother and child.
Resumo:
People in developing countries have faced multigenerational undernutrition and are currently undergoing major lifestyle changes, contributing to an epidemic of metabolic diseases, though the underlying mechanisms remain unclear. Using a Wistar rat model of undernutrition over 50 generations, we show that Undernourished rats exhibit low birth-weight, high visceral adiposity (DXA/MRI), and insulin resistance (hyperinsulinemic-euglycemic clamps), compared to age-/gender-matched control rats. Undernourished rats also have higher circulating insulin, homocysteine, endotoxin and leptin levels, lower adiponectin, vitamin B12 and folate levels, and an 8-fold increased susceptibility to Streptozotocin-induced diabetes compared to control rats. Importantly, these metabolic abnormalities are not reversed after two generations of unrestricted access to commercial chow (nutrient recuperation). Altered epigenetic signatures in insulin-2 gene promoter region of Undernourished rats are not reversed by nutrient recuperation, and may contribute to the persistent detrimental metabolic profiles in similar multigenerational undernourished human populations.
Resumo:
Hymenochirin-1b (Hym-1B; IKLSPETKDNLKKVLKGAIKGAIAVAKMV.NH2) is a cationic, α-helical amphibian host-defense peptide with antimicrobial, anticancer, and immunomodulatory properties. This study investigates the abilities of the peptide and nine analogues containing substitutions of Pro5, Glu6, and Asp9 by either l-lysine or d-lysine to stimulate insulin release in vitro using BRIN-BD11 clonal β cells or isolated mouse islets and in vivo using mice fed a high-fat diet to produce obesity and insulin resistance. Hym-1B produced a significant and concentration-dependent increase in the rate of insulin release from BRIN-BD11 cells without cytotoxicity at concentrations up to 1 µM with a threshold concentration of 1 nM. The threshold concentrations for the analogues were: [P5K], [E6K], [D9K], [P5K, E6K] and [E6K, D9k] 0.003 nM, [E6K, D9K] and [D9k] 0.01 nM, [P5K, D9K] 0.1 nM and [E6k] 0.3 nM. All peptides displayed cytotoxicity at concentrations ≥1 µM except the [P5K] and [D9k] analogues which were non-toxic at 3 µM. The potency and maximum rate of insulin release from mouse islets produced by the [P5K] peptide were significantly greater than produced by Hym-1B. Neither Hym-1B nor the [P5K] analogue at 1 µM concentration had an effect on membrane depolarization or intracellular Ca2+. The [P5K] analogue (1 µM) produced a significant increase in cAMP concentration in BRIN-BD11 cells and stimulated GLP-1 secretion from GLUTag cells. Down-regulation of the protein kinase A pathway by overnight incubation with forskolin completely abolished the insulin-releasing effects of [P5K]hym-1B. Intraperitoneal administration of the [P5K] and [D9k] analogues (75 nmol/kg body weight) to high-fat-fed mice with insulin resistance significantly enhanced glucose tolerance with a concomitant increase in insulin secretion. We conclude that [P5K]hym-1B and [D9k]hym-1B show potential for development into anti-diabetic agents.
Resumo:
La cellule utilise des nœuds d’interactions protéiques relativement stables, conservés et souvent constitués d’adaptateurs moléculaires pour gérer des signaux reçus (synthèse, sécrétion, traffic, métabolisme, division), des problèmes de sécurité et de niveaux d’énergie. Nos résultats montrent que la cellule utilise aussi des nœuds relativement petits et dynamiques où des informations propres concernant des voies métaboliques apparemment indépendantes sont évaluées. Ces informations y sont intégrées localement et une décision y est prise pour action immédiate. Cette idée est supportée par notre étude sur le récepteur de l’insuline (RI). Ce récepteur transmembranaire à activité tyrosine kinase reconnaît un signal externe (insuline circulante) et engage la signalisation de l’insuline, les réponses métaboliques et le contrôle du glucose circulant. Le RI est aussi impliqué dans l’internalisation de l’insuline et sa dégradation dans les endosomes (clairance). Il régule donc indirectement la sécrétion de l’insuline par les cellules du pancréas endocrine. La signification pathophysiologique de l’endocytose du RI ainsi que les bases moléculaires d’une telle coordination sont peu connues. Nous avons construit un réseau d’interactions du RI (IRGEN) à partir d’un protéome de fractions Golgi-endosomales (G/E) hépatiques. Nous démontrons une forte hétérogénéité fonctionnelle autour du RI avec la présence des protéines ATIC, PTPLAD1, AMPKα et ANXA2. ANXA2 est une protéine impliquée dans la biogénèse et le transport endosomal. Nos résultats identifient un site de SUMOylation régulé par l’insuline dans sa région N-terminale. ATIC est une enzyme de la voie de synthèse des purines de novo dont le substrat AICAR est un activateur de l’AMPKα. Des analyses biochimiques in vitro et in vivo nous montrent que ATIC favorise la tyrosine phosphorylation du RI par opposition fonctionnelle à PTPLAD1. Une délétion partielle d’ATIC stimule l’activation de l’AMPK dont la sous-unité AMPKα2 apparaît déterminante pour le trafic du RI. Nous démontrons que ATIC, PTPLAD1, AMPKα, AICAR et ANXA2 contrôlent l’endocytose du RI à travers le cytosquelette d’actine et le réseau de microtubules. Nous ressortons un nœud de signalisation (ATIC, PTPLAD1, AMPKα) capable de détecter les niveaux d’activation du RI, d’énergie cellulaires (rapports AMP/ATP) et aussi d’agir sur la signalisation et l’endocytose du RI. Cette proximité moléculaire expliquerait le débat sur le mécanisme primaire du diabète de type 2 (DT2), notamment entre la sensibilité à l’insuline et sa clairance. Nous avons calculé un enrichissement de 61% de variants communs du DT2 parmi les protéines fonctionnellement proches du RI incluant RI, ATIC, AMPKα, KIF5A et GLUT2. Cet enrichissement suggère que l’hétérogénéité génétique révélée par les consortiums sur études génomiques (GWAS) converge vers des mécanismes peu étudiés de biologie cellulaire.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Ciências Funcionais), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
CONTEXT AND OBJECTIVE: No current biomarker can reliably predict visceral and liver fat content, both of which are risk factors for cardiovascular disease. Vagal tone has been suggested to influence regional fat deposition. Pancreatic polypeptide (PP) is secreted from the endocrine pancreas under vagal control. We investigated the utility of PP in predicting visceral and liver fat. PATIENTS AND METHODS: Fasting plasma PP concentrations were measured in 104 overweight and obese subjects (46 men and 58 women). In the same subjects, total and regional adipose tissue, including total visceral adipose tissue (VAT) and total subcutaneous adipose tissue (TSAT), were measured using whole-body magnetic resonance imaging. Intrahepatocellular lipid content (IHCL) was quantified by proton magnetic resonance spectroscopy. RESULTS: Fasting plasma PP concentrations positively and significantly correlated with both VAT (r = 0.57, P < .001) and IHCL (r = 0.51, P < .001), but not with TSAT (r = 0.02, P = .88). Fasting PP concentrations independently predicted VAT after controlling for age and sex. Fasting PP concentrations independently predicted IHCL after controlling for age, sex, body mass index (BMI), waist-to-hip ratio, homeostatic model assessment 2-insulin resistance, (HOMA2-IR) and serum concentrations of triglyceride (TG), total cholesterol (TC), and alanine aminotransferase (ALT). Fasting PP concentrations were associated with serum ALT, TG, TC, low- and high-density lipoprotein cholesterol, and blood pressure (P < .05). These associations were mediated by IHCL and/or VAT. Fasting PP and HOMA2-IR were independently significantly associated with hepatic steatosis (P < .01). CONCLUSIONS: Pancreatic polypeptide is a novel predictor of visceral and liver fat content, and thus a potential biomarker for cardiovascular risk stratification and targeted treatment of patients with ectopic fat deposition.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.