968 resultados para Inducible Cyclooxygenase Cox-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardiovascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 mu g per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA(2) (thromboxane A(2)) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study, we reported that the short-term treatment with celecoxib, a nonsteroidal anti-inflammatory drug (NSAID) attenuates the activation of brain structures related to nociception and does not interfere with orthodontic incisor separation in rats. The conclusion was that celecoxib could possibly be prescribed for pain in orthodontic patients. However, we did not analyze the effects of this drug in periodontium. The aim of this follow-up study was to analyze effects of celecoxib treatment on recruitment and activation of osteoclasts and alveolar bone resorption after inserting an activated orthodontic appliance between the incisors in our rat model. Twenty rats (400420 g) were pretreated through oral gavage with celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance, set not to cause any palate disjunction. In sham animals, the appliance was immediately removed after introduction. All animals received ground food and, every 12 h, celecoxib or vehicle. After 48 h, they were anesthetized and transcardiacally perfused through the aorta with 4% formaldehyde. Subsequently, maxillae were removed, post-fixed and processed for histomorphometry or immunohistochemical analyses. As expected, incisor distalization induced an inflammatory response with certain histological changes, including an increase in the number of active osteoclasts at the compression side in group treated with vehicle (appliance: 32.2 +/- 2.49 vs sham: 4.8 +/- 1.79, P<0.05) and celecoxib (appliance: 31.0 +/- 1.45 vs sham: 4.6 +/- 1.82, P<0.05). The treatment with celecoxib did not modify substantially the histological alterations and the number of active osteoclasts after activation of orthodontic appliance. Moreover, we did not see any difference between the groups with respect to percentage of bone resorption area. Taken together with our previous results we conclude that short-term treatment with celecoxib can indeed be a therapeutic alternative for pain relieve during orthodontic procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NSAIDs are widely prescribed and used over the years to treat tendon injuries despite its well-known long-term side effects. In the last years several animal and human trials have shown that low-level laser therapy (LLLT) presents modulatory effects on inflammatory markers, however the mechanisms involved are not fully understood. The aim of this study was to evaluate the short-term effects of LLLT or sodium diclofenac treatments on biochemical markers and biomechanical properties of inflamed Achilles tendons. Wistar rats Achilles tendons (n?=?6/group) were injected with saline (control) or collagenase at peritendinous area of Achilles tendons. After 1?h animals were treated with two different doses of LLLT (810?nm, 1 and 3?J) at the sites of the injections, or with intramuscular sodium diclofenac. Regarding biochemical analyses, LLLT significantly decreased (p?<?0.05) COX-2, TNF-a, MMP-3, MMP-9, and MMP-13 gene expression, as well as prostaglandin E2 (PGE2) production when compared to collagenase group. Interestingly, diclofenac treatment only decreased PGE2 levels. Biomechanical properties were preserved in the laser-treated groups when compared to collagenase and diclofenac groups. We conclude that LLLT was able to reduce tendon inflammation and to preserve tendon resistance and elasticity. (c) 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:19451951, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diclofenac sodium (DS) is a non-steroidal anti-inflammatory drug that is widely prescribed for the treatment of rheumatoid arthritis and post-surgery analgesia. The active pharmaceutical ingredient is the anhydrous form; however, it can also exist in hydrate form. In this context, knowing the properties of the solid state is important and relevant in the pharmaceutical area because they have a significant impact on the solubility, bioavailability, and chemical stability of the drugs. In the present study, data from XRPD, FTIR spectroscopy, and thermal analysis were used for the identification and characterization of DS forms (anhydrous and hydrate). An HPLC method was optimized to evaluate the plasma concentration of DS in rabbits. The optimized method exhibited good linearity over the range 0.1-60 mu g/mL with correlation coefficients of >0.9991. The mean recovery was 100%. Precision and accuracy were determined within acceptable limits. Finally, to compare the pharmacological properties of anhydrous and hydrate DS forms, we investigated their effects in the febrile response induced by lipopolysaccharide from E. coli in rabbits. The results show that the antipyretic effect of anhydrous and hydrate DS forms are similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new diruthenium(II,III) complex, of formula [Ru2Cl(ket)(4)], Ruket, containing the non-steroidal anti-inflammatory drug ketoprofen was synthesized and mainly characterized by electrospray ionization mass spectrometry (ESI-MS), UV-Vis-IR electronic spectroscopy and FTIR and Raman vibrational spectroscopies. The four drug-carboxylato bridging ligands stabilize a Ru-2(II,III) mixed valent core in a paddlewheel type structure as confirmed by ESI mass spectra, electronic and vibrational spectroscopies and magnetic measurements. Ruket and the analogous compounds containing ibuprofen, Ruibp, and naproxen, Runpx, were tested for the biological effects in the human colon carcinoma cells HT-29 and Caco-2 expressing high and low levels of COX-2 respectively. All compounds only weakly affected the proliferation of the colorectal cancer cells HT-29 and Caco-2, and similarly only partially inhibited the production/activity of MMP-2 and MMP-9 by HT-29 cells, suggesting that COX-2 inhibition by these drugs can only partially be involved in the pharmacological effects of these derivatives. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n?=?20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808?nm, tip area of 0.00785?cm2, power 30?mW, application time 47?seconds, fluence 180?J/cm2; 3.8?mW/cm2; and total energy 1.4?J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-k beta and COX-2 and by TNF-a and IL-1 beta concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Lasers Surg. Med. 44: 726735, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the tumour cells grown in vitro. At the tissue level, a few cells (probably macrophages) stained positively with antibodies to PAF-R. Conclusions We suggest that PAF-R-dependent pathways are activated during experimental tumour growth, modifying the microenvironment and the phenotype of the tumour macrophages in such a way as to favour tumour growth. Combination therapy with a PAF-R antagonist and a chemotherapeutic drug may represent a new and promising strategy for the treatment of some tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the platelet-activating factor receptor (PAFR) in macrophages is associated with suppressor phenotype. Here, we investigated the PAFR in murine dendritic cells (DC). Bone marrow-derived dendritic cells (BALB/c) were cultured with GM-CSF and maturation was induced by LPS. The PAFR antagonists (WEB2086, WEB2170, PCA4248) and the prostaglandin (PG) synthesis inhibitors (indomethacin, nimesulide and NS-398) were added before LPS. Mature and immature DCs expressed PAFR. LPS increased MHCII, CD40, CD80, CD86, CCR7 and induced IL-10, IL-12, COX-2 and PGE2 expression. IL-10, COX-2 and PGE2 levels were reduced by PAFR antagonists and increased by cPAF. The IL-10 production was independent of PGs. Mature DCs induced antigen-specific lymphocyte proliferation. PAFR antagonists or PG-synthesis inhibitors significantly increased lymphocyte proliferation. It is proposed that PAF has a central role in regulatory DC differentiation through potentiation of IL-10 and PGE2 production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocular enucleation induces profound morphological alterations in central visual areas. However, little is known about the response of glial cells and possible inflammatory processes in visual brain areas resulting from eye enucleation. In this study, immunoblotting and immunostaining assays revealed increased expression of astrocyte and microglia markers in the rat superior colliculus (SC) between 1 and 15 days after contralateral enucleation. A transient increase of neuronal COX-2 protein expression was also found in the SC. To evaluate the role of an anti-inflammatory drug in attenuating both COX-2 and glial cell activation, the synthetic glucocorticoid dexamethasone (DEX) was administered (1mg/kg i.p., for 3 days) to enucleated rats. Immunoblotting data revealed that DEX treatment significantly inhibited COX-2 protein expression. Postlesion immunostaining for astrocyte and microglia markers was also significantly reduced by DEX treatment. These findings suggest that the removal of retinal ganglion cell input generates inflammatory responses in central retinorecipient structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die AMPK ist ein ubiquitär exprimiertes, heterotrimeres Enzym, das bei Energiemangel das Überleben der Zelle sichert. Um diese Funktion ausüben zu können fungiert die AMPK als sogenannter „Energie-Sensor“, der durch steigende AMP Mengen aktiviert wird. In diesem Zustand werden ATP verbrauchende Reaktionen inhibiert und gleichzeitig ATP generierende Vorgänge induziert. Im vaskulären System konnte gezeigt werden, dass die endotheliale NOSynthase durch die AMPK aktiviert, die Angiogenese stimuliert, die Endothelzellapoptose und das Wachstum von Gefäßmuskelzellen inhibiert wird. All diese Prozesse sind fundamental in der Entwicklung von kardiovaskulären Krankheiten, was auf eine protektive Funktion der AMPK im vaskulären System hindeutet. In der vorliegenden Arbeit sollten die Effekte der in vivo Modulation der AMPK Aktivität auf Endothelfunktion, oxidativen Stress und Inflammation untersucht werden. Dazu wurden zwei unterschiedliche Mausmodelle genutzt: Einerseits wurde die AMPK Aktivität durch den pharmakologischen AMPK-Aktivator AICAR stimuliert und andererseits die vaskulär vorherrschende AMPK-Isoform durch knock out ausgeschaltet. Zur Induktion von oxidativem Stress wurde ein bereits charakterisiertes Angiotensin II-Modell angewandt. Zur Untersuchung gehörten neben den Superoxid-Messungen auch die Bestimmung der Stickstoffmonoxid-Mengen in Serum und Aortengewebe, die Relaxationsmessungen in isometrischen Tonusstudien sowie HPLC-basierte Assays. Es konnte gezeigt werden, dass durch die Aktivierung der AMPK mittels AICAR die Angiotensin II induzierte Endotheldysfunktion, der oxidative Stress und auch die vaskuläre Inflammation verbessert werden konnte. Weiterhin zeigte sich dass der knock out der vaskulären Isoform (α1) im Angiotensin II Modell eine signifikant verstärkte Endotheldysfunktion, oxidativen Stress und Inflammation nach sich zog. Anhand der erhobenen Daten konnte die NADPH-Oxidase als Hauptquelle des Angiotensin II induzierten oxidativen Stresses identifiziert werden, wobei sich diese Quelle als AMPK sensitiv erwies. Durch die Aktivierung konnte die Aktivität der NADPH-Oxidase verringert und durch die α1AMPK Defizienz signifikant erhöht werden. Auch die mitochondriale Superoxidproduktion konnte durch die Modulation der AMPK Aktivität beeinflusst werden. Die vaskuläre Inflammation, die anhand der Surrogaten VCAM-1, COX-2 und iNOS untersucht wurde, konnte durch Aktivierung der AMPK verringert werden, der knock out der α1AMPK führte so einer sehr starken Expressionssteigerung der induzierbaren NO-Synthase, was in einem starken Anstieg der NO-Produktion und somit der Peroxynitritbildung resultierte.Die dargestellten Daten deuten stark auf eine protektive Funktion der AMPK im vaskulären System hin und sollte als therapeutisches Ziel, nicht nur in Bezug auf diabetische Patienten, in Betracht gezogen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a product of cyclooxygenase (COX) and PGE synthase (PGES) and deactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). Down-regulation of PGDH contributes to PGE2 accumulation in lung and colon cancers but has not been identified in pancreatic cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholangiocarcinoma is the second most common malignant tumor of the liver. We analyzed, immunohistochemically, the significance of cell cycle- and apoptosis-related markers in 128 cholangiocarcinomas (42 intrahepatic, 70 extrahepatic, and 16 gallbladder carcinomas) combined in a tissue microarray. Follow-up was available for 57 patients (44.5%). In comparison with normal tissue (29 specimens), cholangiocarcinomas expressed significantly more frequently p53, bcl-2, bax, and COX-2 (P.05 <). Intrahepatic tumors were significantly more frequently bcl-2+ and p16+, whereas extrahepatic tumors were more often p53+ (P < .05). Loss of p16 expression was associated with reduced survival of patients. Our data show that p53, bcl-2, bax, and COX-2 have an important role in the pathogenesis of cholangiocarcinomas. The differential expression of p16, bcl-2, and p53 between intrahepatic and extrahepatic tumors demonstrates that there are location-related differences in the phenotype and the genetic profiles of these tumors. Moreover, p16 was identified as an important prognostic marker in cholangiocarcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.