980 resultados para Genetic change
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
Background Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. Methods This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >= 50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. Findings 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI 31.6 to 17.7) than with placebo (-3.3%, 12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12%) patients in the mipomersen group but none in the placebo group had increases in concentrations of alanine aminotransferase of three times or more the upper limit of normal. Interpretation Inhibition of apolipoprotein B synthesis by mipomersen represents a novel, effective therapy to reduce LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia who are already receiving lipid-lowering drugs, including high-dose statins.
Resumo:
The inflammasome is an inducible cytoplasmic structure that is responsible for production and release of biologically active interleukin-1 (IL-1). A polymorphism in the inflammasome component NALP3 has been associated with decreased IL-1 levels and increased occurrence of vaginal Candida infection. We hypothesized that this polymorphism-induced variation would influence susceptibility to infertility. DNA was obtained from 243 women who were undergoing in vitro fertilization (IVF) and tested for a length polymorphism in intron 2 of the gene coding for NALP3 (gene symbol CIAS1). At the conclusion of testing the findings were analyzed in relation to clinical parameters and IVF outcome. The frequency of the 12 unit repeat allele, associated with maximal inflammasome activity, was 62.3% in cases of female infertility vs. 75.6% in cases where only the male partner had a detectable fertility problem (p = 0.0095). Conversely, the frequency of the 7 unit repeat allele was 28.9% in those with a female fertility problem, 17.0% in women with infertile males and 18.4% in idiopathic infertility (p = 0.0124). Among the women who were cervical culture-positive for mycoplasma the frequency of the 7 unit repeat was 53.7% as opposed to 19.5% in those negative for this infection (p < 0.0001). We conclude that the CIAS1 7 unit repeat polymorphism increases the likelihood of mycoplasma infection-associated female infertility. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The preset study adopted an intergroup approach to information sharing and communication in three organisational samples during change. In Study 1, employees from a public hospital (N = 142) completed a survey measuring perceptions of organisational communication and strength of identification with the work unit and the organisation as a whole. Consistent with predictions, team members rated communication from double ingroup members (same work unit/same occupational group) more favourably than communication from partial group members (same work unit/different occupational group). Also as predicted, work unit identification was related to favourable ratings of work unit communication across occupational groups, whereas occupational identification was related to favourable ratings of work unit communication within occupational groups. In Study 2, strength of identification with three organisational groups was associated with positive ratings of communication among employees from the same public hospital (N = 189) and a military organisation (N = 2119). Based on these results, intergroup strategies for the management of information sharing and organisational communication during change are discussed.
Resumo:
Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.
Resumo:
Context: Although numerous reports of mutations in GH1 and GHRHR (GHRH receptor) causing isolated GH deficiency (IGHD) have been published, mutations in GHRH itself have not been hitherto reported but are obvious candidates for GH deficiency. Objective: The aim of this study was to identify mutations in GHRH in a large cohort of patients with IGHD. Patients and Methods: DNA was isolated from 151 patients diagnosed with IGHD at national and international centers. Seventy-two patients fulfilled all the following criteria: severe short stature (height SD score <= -2.5), low peakGHafter stimulation (peak <= 5 ng/ml), eutopic posterior pituitary lobe, and absence of mutations in GH1 and GHRHR and therefore were strong candidates for GHRH mutations. The coding sequence and splice sites of GHRH were amplified by PCR with intronic primers and sequenced. Results: In five of 151 patients (four of 42 from Brazil), the GHRH c. 223 C>T, p. L75F change was identified in heterozygosity. This variant has been previously reported as a polymorphism and is more frequent in African than European and Asian populations. Six allelic variants (five novel) that do not predict change of amino acids or splice sites were identified in five patients: c. 147 C>T, p.S49S, IVS1 -70 G>A, IVS1 -74 T>C, IVS3 -47 del1, and IVS3 +7 G>A/IVS3 + 41 G>A. No functional mutations were found in this cohort. Conclusions: GHRH mutations were not identified in a selected cohort of patients with IGHD, suggesting that, if they exist, they may be an extremely rare cause of IGHD. Other, as-yet-unidentified genetic factors may be implicated in the genetic etiology of IGHD in our cohort. (J Clin Endocrinol Metab 96: E1457-E1460, 2011)
Resumo:
Non-syndromic cleft lip with or without cleft palate (NS CL/P) is a complex disease in which heritability estimates vary widely depending on the population studied. To evaluate the importance of genetic contribution to NS CL/P in the Brazilian population, we conducted a study with 1,042 families from five different locations (Santarem, Fortaleza, Barbalha, Maceio, and Rio de Janeiro). We also evaluated the role of consanguinity and ethnic background. The proportion of familial cases varied significantly across locations, with the highest values found in Santarem (44%) and the lowest in Maceio (23%). Heritability estimates showed a higher genetic contribution to NS CL/P in Barbalha (85%), followed by Santarem (71%), Rio de Janeiro (70%), Fortaleza (64%), and Maceio (45%). Ancestry was not correlated with the occurrence of NS CL/P or with the variability in heritability. Only in Rio de Janeiro was the coefficient of inbreeding significantly larger in NS CL/P families than in the local population. Recurrence risk for the total sample was approximately 1.5-1.6%, varying according to the location studied (0.6-0.7% in Maceio to 2.2-2.8% in Barbalha). Our findings show that the degree of genetic contribution to NS CL/P varies according to the geographic region studied, and this difference cannot be attributed to consanguinity or ancestry. These findings suggest that Barbalha is a promising region for genetic studies. The data presented here will be useful in interpreting results from molecular analyses and show that care must be taken when pooling samples from different populations for association studies. (C) 2011 Wiley-Liss, Inc.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Genetic population structure in the catadromous Australian bass Macquaria novemaculeata was investigated using samples from four locations spanning 600 km along the eastern Australian coastline. Both allozymes and mtDNA control region sequences were examined. Population subdivision estimates based on allozymes revealed low levels of population structuring (G(st)=0.043, P<0.05). However, mtDNA indicated moderate levels of geographic population structure (G(st)=0.146, P<0.01). Phylogenetic analysis of mtDNA control region sequences (mean sequence divergence 1.9%) indicated little phylogeographic structuring. Results suggested that genotypic variation within each river population, while bring affected primarily by genetic drift, was also prevented from more significant divergence by homogenizing levels of gene flow-synonymous with a one-dimensional stepping-stone model of population structure. The catadromous life history of Macquaria novemaculeata was considered to br influential on the pattern of population structure displayed. Results were compared to the few population genetic studies involving catadromous fishes, indicating that catadromy alone is unlikely to be a good predictor of population structure. A more comprehensive suite of biological characteristics than simple life-history traits must be considered fully to allow reliable predictive models of population structure to be formulated. (C) 1997 The Fisheries Society of the British Isles.
Resumo:
Background Meta-analysis is increasingly being employed as a screening procedure in large-scale association studies to select promising variants for follow-up studies. However, standard methods for meta-analysis require the assumption of an underlying genetic model, which is typically unknown a priori. This drawback can introduce model misspecifications, causing power to be suboptimal, or the evaluation of multiple genetic models, which augments the number of false-positive associations, ultimately leading to waste of resources with fruitless replication studies. We used simulated meta-analyses of large genetic association studies to investigate naive strategies of genetic model specification to optimize screenings of genome-wide meta-analysis signals for further replication. Methods Different methods, meta-analytical models and strategies were compared in terms of power and type-I error. Simulations were carried out for a binary trait in a wide range of true genetic models, genome-wide thresholds, minor allele frequencies (MAFs), odds ratios and between-study heterogeneity (tau(2)). Results Among the investigated strategies, a simple Bonferroni-corrected approach that fits both multiplicative and recessive models was found to be optimal in most examined scenarios, reducing the likelihood of false discoveries and enhancing power in scenarios with small MAFs either in the presence or in absence of heterogeneity. Nonetheless, this strategy is sensitive to tau(2) whenever the susceptibility allele is common (MAF epsilon 30%), resulting in an increased number of false-positive associations compared with an analysis that considers only the multiplicative model. Conclusion Invoking a simple Bonferroni adjustment and testing for both multiplicative and recessive models is fast and an optimal strategy in large meta-analysis-based screenings. However, care must be taken when examined variants are common, where specification of a multiplicative model alone may be preferable.
Resumo:
A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp, native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56-58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed significantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7.7 to 6.0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2.0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0.05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued.