892 resultados para Generalized Logistic Model
Resumo:
In this work we present the idea of how generalized ensembles can be used to simplify the operational study of non-additive physical systems. As alternative of the usual methods of direct integration or mean-field theory, we show how the solution of the Ising model with infinite-range interactions is obtained by using a generalized canonical ensemble. We describe how the thermodynamical properties of this model in the presence of an external magnetic field are founded by simple parametric equations. Without impairing the usual interpretation, we obtain an identical critical behaviour as observed in traditional approaches.
Resumo:
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827-842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.
Resumo:
In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.
Resumo:
Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.
Resumo:
This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^
Resumo:
Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^
Resumo:
In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.
Resumo:
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.
Resumo:
In this paper, a fuzzy feedback linearization is used to control nonlinear systems described by Takagi-Suengo (T-S) fuzzy systems. In this work, an optimal controller is designed using the linear quadratic regulator (LQR). The well known weighting parameters approach is applied to optimize local and global approximation and modelling capability of T-S fuzzy model to improve the choice of the performance index and minimize it. The approach used here can be considered as a generalized version of T-S method. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the proposed optimal LQR algorithm.
Resumo:
La evaluación de las prestaciones de las embarcaciones a vela ha constituido un objetivo para ingenieros navales y marinos desde los principios de la historia de la navegación. El conocimiento acerca de estas prestaciones, ha crecido desde la identificación de los factores clave relacionados con ellas(eslora, estabilidad, desplazamiento y superficie vélica), a una comprensión más completa de las complejas fuerzas y acoplamientos involucrados en el equilibrio. Junto con este conocimiento, la aparición de los ordenadores ha hecho posible llevar a cabo estas tareas de una forma sistemática. Esto incluye el cálculo detallado de fuerzas, pero también, el uso de estas fuerzas junto con la descripción de una embarcación a vela para la predicción de su comportamiento y, finalmente, sus prestaciones. Esta investigación tiene como objetivo proporcionar una definición global y abierta de un conjunto de modelos y reglas para describir y analizar este comportamiento. Esto se lleva a cabo sin aplicar restricciones en cuanto al tipo de barco o cálculo, sino de una forma generalizada, de modo que sea posible resolver cualquier situación, tanto estacionaria como en el dominio del tiempo. Para ello se comienza con una definición básica de los factores que condicionan el comportamiento de una embarcación a vela. A continuación se proporciona una metodología para gestionar el uso de datos de diferentes orígenes para el cálculo de fuerzas, siempre con el la solución del problema como objetivo. Esta última parte se plasma en un programa de ordenador, PASim, cuyo propósito es evaluar las prestaciones de diferentes ti pos de embarcaciones a vela en un amplio rango de condiciones. Varios ejemplos presentan diferentes usos de PASim con el objetivo de ilustrar algunos de los aspectos discutidos a lo largo de la definición del problema y su solución . Finalmente, se presenta una estructura global de cara a proporcionar una representación virtual de la embarcación real, en la cual, no solo e l comportamiento sino también su manejo, son cercanos a la experiencia de los navegantes en el mundo real. Esta estructura global se propone como el núcleo (un motor de software) de un simulador físico para el que se proporciona una especificación básica. ABSTRACT The assessment of the performance of sailing yachts, and ships in general, has been an objective for naval architects and sailors since the beginning of the history of navigation. The knowledge has grown from identifying the key factors that influence performance(length, stability, displacement and sail area), to a much more complete understanding of the complex forces and couplings involved in the equilibrium. Along with this knowledge, the advent of computers has made it possible to perform the associated tasks in a systematic way. This includes the detailed calculation of forces, but also the use of those forces, along with the description of a sailing yacht, to predict its behavior, and ultimately, its performance. The aim of this investigation is to provide a global and open definition of a set of models and rules to describe and analyze the behavior of a sailing yacht. This is done without applying any restriction to the type of yacht or calculation, but rather in a generalized way, capable of solving any possible situation, whether it is in a steady state or in the time domain. First, the basic definition of the factors that condition the behavior of a sailing yacht is given. Then, a methodology is provided to assist with the use of data from different origins for the calculation of forces, always aiming towards the solution of the problem. This last part is implemented as a computational tool, PASim, intended to assess the performance of different types of sailing yachts in a wide range of conditions. Several examples then present different uses of PASim, as a way to illustrate some of the aspects discussed throughout the definition of the problem and its solution. Finally, a global structure is presented to provide a general virtual representation of the real yacht, in which not only the behavior, but also its handling is close to the experience of the sailors in the real world. This global structure is proposed as the core (a software engine) of a physical yacht simulator, for which a basic specification is provided.
Resumo:
Includes bibliographies (p. 22).
Resumo:
"September 30, 1963."
Resumo:
The dynamics of the non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained from Monte Carlo simulations. The method is also employed to obtain parameter values for the kinetic inverse Ising modeling problem, where couplings and local field values of a fully connected spin system are inferred from data. © 2014 IOP Publishing Ltd and SISSA Medialab srl.