971 resultados para Generalized Jkr Model
Resumo:
In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.
Resumo:
This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.
Resumo:
Research into the etiology of social phobia has lagged far behind that of descriptive and maintaining factors. The current paper reviews data from a variety of sources that have some bearing on questions of the origins of social fears. Areas examined include genetic factors, temperament, childrearing, negative life events, and adverse social experiences. Epidemiological data are examined in detail and factors associated with social phobia such as cognitive distortions and social skills are also covered. The paper concludes with an initial model that draws together some of the current findings and aims to provide a platform for future research directions. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Eukaryotic genomes display segmental patterns of variation in various properties, including GC content and degree of evolutionary conservation. DNA segmentation algorithms are aimed at identifying statistically significant boundaries between such segments. Such algorithms may provide a means of discovering new classes of functional elements in eukaryotic genomes. This paper presents a model and an algorithm for Bayesian DNA segmentation and considers the feasibility of using it to segment whole eukaryotic genomes. The algorithm is tested on a range of simulated and real DNA sequences, and the following conclusions are drawn. Firstly, the algorithm correctly identifies non-segmented sequence, and can thus be used to reject the null hypothesis of uniformity in the property of interest. Secondly, estimates of the number and locations of change-points produced by the algorithm are robust to variations in algorithm parameters and initial starting conditions and correspond to real features in the data. Thirdly, the algorithm is successfully used to segment human chromosome 1 according to GC content, thus demonstrating the feasibility of Bayesian segmentation of eukaryotic genomes. The software described in this paper is available from the author's website (www.uq.edu.au/similar to uqjkeith/) or upon request to the author.
Resumo:
The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively. The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.
Resumo:
We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for t
Resumo:
IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.
Resumo:
We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
In this paper, the authors use an exponential generalized autoregressive conditional heteroscedastic (EGARCH) error-correction model (ECM), that is, EGARCH-ECM, to estimate the pass-through effects of foreign exchange (FX) rates and producers’ prices for 20 U.K. export sectors. The long-run adjustment of export prices to FX rates and producers’ prices is within the range of -1.02% (for the Textiles sector) and -17.22% (for the Meat sector). The contemporaneous pricing-to-market (PTM) coefficient is within the range of -72.84% (for the Fuels sector) and -8.05% (for the Textiles sector). Short-run FX rate pass-through is not complete even after several months. Rolling EGARCH-ECMs show that the short and long-run effects of FX rate and producers’ prices fluctuate substantially as are asymmetry and volatility estimates before equilibrium is achieved.
Resumo:
Starting from a continuum description, we study the nonequilibrium roughening of a thermal re-emission model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our problem to a generalized version of an earlier nonlocal KPZ (Kardar-Parisi-Zhang) model. In 2 + 1 dimensions, the values of the roughness and the dynamic exponents calculated from our theory go like α ≈ z ≈ 1 and in 1 + 1 dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results. Interestingly, Galilean invariance is maintained throughout.