967 resultados para Generalized Driven Nonlinear Threshold Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions up to order n(-1/2) for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The specification of Quality of Service (QoS) constraints over software design requires measures that ensure such requirements are met by the delivered product. Achieving this goal is non-trivial, as it involves, at least, identifying how QoS constraint specifications should be checked at the runtime. In this paper we present an implementation of a Model Driven Architecture (MDA) based framework for the runtime monitoring of QoS properties. We incorporate the UML2 superstructure and the UML profile for Quality of Service to provide abstract descriptions of component-and-connector systems. We then define transformations that refine the UML2 models to conform with the Distributed Management Taskforce (DMTF) Common Information Model (CIM) (Distributed Management Task Force Inc. 2006), a schema standard for management and instrumentation of hardware and software. Finally, we provide a mapping the CIM metamodel to a .NET-based metamodel for implementation of the monitoring infrastructure utilising various .NET features including the Windows Management Instrumentation (WMI) interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we proposed a flexible cure rate survival model by assuming the number of competing causes of the event of interest following the Conway-Maxwell distribution and the time for the event to follow the generalized gamma distribution. This distribution can be used to model survival data when the hazard rate function is increasing, decreasing, bathtub and unimodal-shaped including some distributions commonly used in lifetime analysis as particular cases. Some appropriate matrices are derived in order to evaluate local influence on the estimates of the parameters by considering different perturbations, and some global influence measurements are also investigated. Finally, data set from the medical area is analysed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researches in Requirements Engineering have been growing in the latest few years. Researchers are concerned with a set of open issues such as: communication between several user profiles involved in software engineering; scope definition; volatility and traceability issues. To cope with these issues a set of works are concentrated in (i) defining processes to collect client s specifications in order to solve scope issues; (ii) defining models to represent requirements to address communication and traceability issues; and (iii) working on mechanisms and processes to be applied to requirements modeling in order to facilitate requirements evolution and maintenance, addressing volatility and traceability issues. We propose an iterative Model-Driven process to solve these issues, based on a double layered CIM to communicate requirements related knowledge to a wider amount of stakeholders. We also present a tool to help requirements engineer through the RE process. Finally we present a case study to illustrate the process and tool s benefits and usage