961 resultados para Flows on surfaces


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front-tracking method. The velocity field is computed using a finite-difference discretization of a modification of the NavierStokes equations. These equations together with the continuity equation are solved for the two-dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature changes caused by laser irradiation can promote damage to the surrounding dental tissues. In this study, we evaluated the temperature changes of recently extracted human mandibular incisors during intracanal irradiation with an 810-nm diode laser at different settings. Fifty mandibular incisors were enlarged up to an apical size of ISO No. 40 file. After the final rinse with 17% ethylenediaminetetraacetic acid, 0.2% lauryl sodium sulfate biologic detergent, and sterile water, samples were irradiated with circular movements from apex to crown through five different settings of output power (1.5, 2.0, 2.5, 3.0, and 3.5 W) in continuous mode. The temperature changes were measured on both sides of the apical and middle root thirds using two thermopar devices. A temperature increase of 7 degrees C was considered acceptable as a safe threshold when applying the diode laser. Results: The results showed that only 3.5-W output power increased the outer surface temperature above the critical value. Conclusion: The recommended output power can be stipulated as equal to or less than 3 W to avoid overheating during diode laser irradiation on thin dentin walls. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.015006]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multilayer films of carboxymethylcellulose (CMC), a polyanion, and bromide salts of poly(4-vinylpyridine) quaternized with linear aliphatic chains of 2 (ethyl) and 5 (pentyl) carbon atoms, coded as QPVP-C2 and QPVP-C5, respectively, were fabricated by layer-by-layer (LbL) self-assembly onto Si/SiO2 wafers (hydrophilic substrate) or polystyrene, PS, films (hydrophobic substrate). The films were characterized by means of ex situ and in situ ellipsometry, atomic force microscopy (AFM), contact angle measurements and sum frequency generation vibrational spectroscopy (SFG). Antimicrobial tests were used to assess the exposure of pyridinium moieties to the aqueous medium. In situ ellipsometry indicated that for Si/SiO2 the chains were more expanded than the PS films and both substrates systems composed of QPVP-C5 were thicker than those with QPVP-C2. For dried layers, the alkyl side group size had a small effect on the thickness evolution, regardless of the substrate. At pH 2 the multilayers showed high resistance, evidencing that the build-up is driven not only by cooperative polymer-polymer ion pairing, but also by hydrophobic interactions between the alkyl side chains. The LbL films became irregular as the number of depositions increased. After the last deposition, the wettability of QPVP-C2 or QPVP-C5 terminated systems on the Si/SiO2 wafers and PS films were similar, except for QPVP-C2 on Si/SiO2 wafers. Unlike the morphology observed for LbL films on Si/SiO2 wafers, PS induced the formation of porous structures. SFG showed that in air the molecular orientation of pyridinium groups in multilayers with QPVP-C5 was stronger than in those containing QPVP-C2. The exposure of pyridinium moieties to the aqueous medium was more pronounced when the LbL were assembled on Si/SiO2 wafers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epithelial cells are mainly responsible for the formation of tissues that cover the external and internal surfaces of organs like skin, lining of the lungs and intestines. The cells must adhere to substrates and to each other in compliance with certain stimulus. In this way, adhesion properties can be regulated by the cell which simultaneously senses the chemical and mechanical properties of its environment. Their adhesion and growth on biomaterials depends on substrate properties such as surface wettability, topography and chemistry. The aim of this study is to investigate cell-surface interactions using several materials and different surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work focuses on magnetohydrodynamic (MHD) mixed convection flow of electrically conducting fluids enclosed in simple 1D and 2D geometries in steady periodic regime. In particular, in Chapter one a short overview is given about the history of MHD, with reference to papers available in literature, and a listing of some of its most common technological applications, whereas Chapter two deals with the analytical formulation of the MHD problem, starting from the fluid dynamic and energy equations and adding the effects of an external imposed magnetic field using the Ohm's law and the definition of the Lorentz force. Moreover a description of the various kinds of boundary conditions is given, with particular emphasis given to their practical realization. Chapter three, four and five describe the solution procedure of mixed convective flows with MHD effects. In all cases a uniform parallel magnetic field is supposed to be present in the whole fluid domain transverse with respect to the velocity field. The steady-periodic regime will be analyzed, where the periodicity is induced by wall temperature boundary conditions, which vary in time with a sinusoidal law. Local balance equations of momentum, energy and charge will be solved analytically and numerically using as parameters either geometrical ratios or material properties. In particular, in Chapter three the solution method for the mixed convective flow in a 1D vertical parallel channel with MHD effects is illustrated. The influence of a transverse magnetic field will be studied in the steady periodic regime induced by an oscillating wall temperature. Analytical and numerical solutions will be provided in terms of velocity and temperature profiles, wall friction factors and average heat fluxes for several values of the governing parameters. In Chapter four the 2D problem of the mixed convective flow in a vertical round pipe with MHD effects is analyzed. Again, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the wall. A numerical solution is presented, obtained using a finite element approach, and as a result velocity and temperature profiles, wall friction factors and average heat fluxes are derived for several values of the Hartmann and Prandtl numbers. In Chapter five the 2D problem of the mixed convective flow in a vertical rectangular duct with MHD effects is discussed. As seen in the previous chapters, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the four walls. The numerical solution obtained using a finite element approach is presented, and a collection of results, including velocity and temperature profiles, wall friction factors and average heat fluxes, is provided for several values of, among other parameters, the duct aspect ratio. A comparison with analytical solutions is also provided, as a proof of the validity of the numerical method. Chapter six is the concluding chapter, where some reflections on the MHD effects on mixed convection flow will be made, in agreement with the experience and the results gathered in the analyses presented in the previous chapters. In the appendices special auxiliary functions and FORTRAN program listings are reported, to support the formulations used in the solution chapters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis was to investigate novel techniques to create complex hierarchical chemical patterns on silica surfaces with micro to nanometer sized features. These surfaces were used for a site-selective assembly of colloidal particles and oligonucleotides. To do so, functionalised alkoxysilanes (commercial and synthesised ones) were deposited onto planar silica surfaces. The functional groups can form reversible attractive interactions with the complementary surface layers of the opposing objects that need to be assembled. These interactions determine the final location and density of the objects onto the surface. Photolithographically patterned silica surfaces were modified with commercial silanes, in order to create hydrophilic and hydrophobic regions on the surface. Assembly of hydrophobic silica particles onto these surfaces was investigated and finally, pH and charge effects on the colloidal assembly were analysed. In the second part of this thesis the concept of novel, "smart" alkoxysilanes is introduced that allows parallel surface activation and patterning in a one-step irradiation process. These novel species bear a photoreactive head-group in a protected form. Surface layers made from these molecules can be irradiated through a mask to remove the protecting group from selected regions and thus generate lateral chemical patterns of active and inert regions on the substrate. The synthesis of an azide-reactive alkoxysilane was successfully accomplished. Silanisation conditions were carefully optimised as to guarantee a smooth surface layer, without formation of micellar clusters. NMR and DLS experiments corroborated the absence of clusters when using neither water nor NaOH as catalysts during hydrolysis, but only the organic solvent itself. Upon irradiation of the azide layer, the resulting nitrene may undergo a variety of reactions depending on the irradiation conditions. Contact angle measurements demonstrated that the irradiated surfaces were more hydrophilic than the non-irradiated azide layer and therefore the formation of an amine upon irradiation was postulated. Successful photoactivation could be demonstrated using condensation patterns, which showed a change in wettability on the wafer surface upon irradiation. Colloidal deposition with COOH functionalised particles further underlined the formation of more hydrophilic species. Orthogonal photoreactive silanes are described in the third part of this thesis. The advantage of orthogonal photosensitive silanes is the possibility of having a coexistence of chemical functionalities homogeneously distributed in the same layer, by using appropriate protecting groups. For this purpose, a 3',5'-dimethoxybenzoin protected carboxylic acid silane was successfully synthesised and the kinetics of its hydrolysis and condensation in solution were analysed in order to optimise the silanisation conditions. This compound was used together with a nitroveratryl protected amino silane to obtain bicomponent surface layers. The optimum conditions for an orthogonal deprotection of surfaces modified with this two groups were determined. A 2-step deprotection process through a mask generated a complex pattern on the substrate by activating two different chemistries at different sites. This was demonstrated by colloidal adsorption and fluorescence labelling of the resulting substrates. Moreover, two different single stranded oligodeoxynucleotides were immobilised onto the two different activated areas and then hybrid captured with their respective complementary, fluorescent labelled strand. Selective hybridisation could be shown, although non-selective adsorption issues need to be resolved, making this technique attractive for possible DNA microarrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A way to investigate turbulence is through experiments where hot wire measurements are performed. Analysis of the in turbulence of a temperature gradient on hot wire measurements is the aim of this thesis work. Actually - to author's knowledge - this investigation is the first attempt to document, understand and ultimately correct the effect of temperature gradients on turbulence statistics. However a numerical approach is used since instantaneous temperature and streamwise velocity fields are required to evaluate this effect. A channel flow simulation at Re_tau = 180 is analyzed to make a first evaluation of the amount of error introduced by temperature gradient inside the domain. Hot wire data field is obtained processing the numerical flow field through the application of a proper version of the King's law, which connect voltage, velocity and temperature. A drift in mean streamwise velocity profile and rms is observed when temperature correction is performed by means of centerline temperature. A correct mean velocity pro�le is achieved correcting temperature through its mean value at each wall normal position, but a not negligible error is still present into rms. The key point to correct properly the sensed velocity from the hot wire is the knowledge of the instantaneous temperature field. For this purpose three correction methods are proposed. At the end a numerical simulation at Re_tau =590 is also evaluated in order to confirm the results discussed earlier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ich untersuche die nicht bereits durch die Arbeit "Singular symplectic moduli spaces" von Kaledin, Lehn und Sorger (Invent. Math. 164 (2006), no. 3) abgedeckten Fälle von Modulräumen halbstabiler Garben auf projektiven K3-Flächen - die Fälle mit Mukai-Vektor (0,c,0) sowie die Modulräume zu nichtgenerischen amplen Divisoren - hinsichtlich der möglichen Konstruktion neuer Beispiele von kompakten irreduziblen symplektischen Mannigfaltigkeiten. Ich stelle einen Zusammenhang zu den bereits untersuchten Modulräumen und Verallgemeinerungen derselben her und erweitere bekannte Ergebnisse auf alle offenen Fälle von Garben vom Rang 0 und viele Fälle von Garben von positivem Rang. Insbesondere kann in diesen Fällen die Existenz neuer Beispiele von kompakten irreduziblen symplektischen Mannigfaltigkeiten, die birational über Komponenten des Modulraums liegen, ausgeschlossen werden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.