965 resultados para Estrogen a and ß receptors
Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists.
Resumo:
The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment.
Resumo:
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Resumo:
A sporadic case of multiple endocrine neoplasia type I with coexisting insulinoma and hyperparathyroidism was investigated in vivo and in vitro. The insulinoma was localized by somatostatin receptor scintigraphy and these receptors were functionally active. Octreotide administration decreased the basal insulin and glucagon secretion by 90 and 46%, respectively. Immunocytochemistry of the insulinoma tissue was positive for insulin, chromogranin A and neuropeptide Y. The insulinoma cells were also isolated and cultured in vitro. Incubation experiments revealed that a low glucose concentration (1 mmol/l) was sufficient to increase cytosolic free calcium and to produce a maximal glucose-induced insulin release. Northern blot analysis of RNA obtained from the tumor showed a high abundance of the low Km glucose transporter GLUT1 but no transcript for the high Km glucose transporter GLUT2. The abnormal distribution of glucose transporters probably relates to the abnormal glucose sensing of insulinoma cells, and explains their sustained insulin secretion at low glucose concentrations. Whether these abnormalities share a pathogenetic link with the presence of functionally active somatostatin receptors remains to be elucidated.
Resumo:
Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.
Resumo:
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.
Resumo:
Recent advances in basic science pointed to a role for proteinases, through the activation of proteinase-activated receptors (PARs) in nociceptive mechanisms. Activation of PAR1, PAR2 and PAR4 either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Sub-inflammatory doses of PAR2 agonist still induced hyperalgesia and allodynia while PAR2 has been shown to be implicated in the generation of hyperalgesia in different inflammatory models. In contrast, sub-inflammatory doses of PAR1 increases nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as an analgesic agent. PARs are present and functional on sensory neurons, where they participate either directly or indirectly to the transmission and/or inhibition of nociceptive messages. Taken together, the results discussed in this review highlight proteinases as signaling molecules to sensory nerves. We need to consider proteinases and the receptors that are activated by proteinases as important potential targets for the development of analgesic drugs in the treatment of inflammatory pain.
Resumo:
The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.
Resumo:
The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.
Resumo:
The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.
Resumo:
BACKGROUND: Autoimmune diseases with elevated circulating autoantibodies drive tissue damage and the onset of disease. The Fcγ receptors bind IgG subtypes modulating the clearance of circulating immune complexes (CIC). The inner ear damage in Ménière's disease (MD) could be mediated by an immune response driven by CIC. We examined single-nucleotide polymorphism (SNPs) in the CD16A and CD32 genes in patients with MD which may determine a Fcγ receptor with lower binding to CIC. METHODS: The functional CD16A (FcγRIIIa*559A > C, rs396991) and CD32A (FcγRIIa*519A > G, rs1801274) SNPs were analyzed using PCR-based TaqMan Genotyping Assay in two cohorts of 156 mediterranean and 112 Galicia patients in a case-control study. Data were analyzed by χ2 with Fisher's exact test and Cochran-Armitage trend test (CATT). CIC were measured by ELISA for C1q-binding CIC. RESULTS: Elevated CIC were found in 7% of patients with MD during the intercrisis period. No differences were found in the allelic frequency for rs396991 or rs1801274 in controls subjects when they were compared with patients with MD from the same geographic area. However, the frequency of AA and AC genotypes of CD16A (rs396991) differed among mediterranean and Galicia controls (Fisher's test, corrected p = 6.9 × 10-4 for AA; corrected p = 0.02 for AC). Although genotype AC of the CD16A receptor was significantly more frequent in mediterranean controls than in patients, [Fisher's test corrected p = 0.02; OR = 0.63 (0.44-0.91)], a genetic additive effect for the allele C was not observed (CATT, p = 0.23). Moreover, no differences were found in genotype frequencies for rs396991 between patients with MD and controls from Galicia (CATT, p = 0.14). The allelic frequency of CD32 (rs1801274) was not different between patients and controls either in mediterranean (p = 0.51) or Galicia population (p = 0.11). CONCLUSIONS: Elevated CIC are not found in most of patients with MD. Functional polymorphisms of CD16A and CD32 genes are not associated with onset of MD.
Resumo:
It has been demonstrated that parotid glands of rats infected with Trypanosoma cruzi present severe histological alterations; changes include reduction in density and volume of the acini and duct systems and an increase in connective tissue. We evaluated the association between morphological changes in parotid glands, circulating testosterone levels and epidermal growth factor receptor (EGF-R) expression in experimental Chagas disease in rats. Animals at 18 days of infection (acute phase) showed a significant decrease in body weight, serum testosterone levels and EGF-R expression in the parotid gland compared with a control group. Since decreases in body weight could lead to a reduction in circulating testosterone concentration, we believe that the reduction in EGF-R expression in parotid glands of infected rats is due to alterations in testosterone levels and atrophy of parotid glands is caused by changes in EGF-R expression. Additionally, at 50 days (chronic phase) of infection parotid glands showed a normal histological aspect likely due to the normalization of the body weight. These findings suggest that the testosterone-EGF-R axis is involved in the histological changes.
Resumo:
Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.
Resumo:
One hundred years ago, Carlos Chagas discovered a new disease, the American trypanosomiasis. Chagas and co-workers later characterised the disease's common manifestation, chronic cardiomyopathy, and suggested that parasitic persistence coupled with inflammation was the key underlying pathogenic mechanism. Better comprehension of the molecular mechanisms leading to clinical heart afflictions is a prerequisite to developing new therapies that ameliorate inflammation and improve heart function without hampering parasite control. Here, we review recent data showing that distinct cell adhesion molecules, chemokines and chemokine receptors participate in anti-parasite immunity and/or detrimental leukocyte trafficking to the heart. Moreover, we offer evidence that CC-chemokine receptors may be attractive therapeutic targets aiming to regain homeostatic balance in parasite/host interaction thereby improving prognosis, supporting that it is becoming a non-phantasious proposal.
Resumo:
The recruitment of circulating eosinophils by chemokines and chemokine receptors plays an important role in the inflammation process in acute human schistosomiasis. Our main focus has been on the plasma chemokines (CXCL8/CCL2/CCL3/CCL24) and chemokine receptors (CCR2/CCR3/CCR5/CXCR1/CXCR2/CXCR3/CXCR4) expressed by circulating eosinophils from acute Schistosoma mansoni infected patients (ACT). Our studies compared ACT patients and healthy individuals as a control group. Our major findings demonstrated a plethora of chemokine secretion with significantly increased secretion of all chemokines analysed in the ACT group. Although no differences were detected for beta-chemokine receptors (CCR2, CCR3 and CCR5) or alpha-chemokine receptors (CXCR3 and CXCR4), a significantly lower frequency of CXCR1+ and CXCR2+ eosinophils in the ACT group was observed. The association between chemokines and their chemokine receptors revealed that acutely infected schistosome patients displaying decreased plasma levels of CCL24 are the same patients who presented enhanced secretion of CCL3, as well as increased expression of both the CCR5 and CXCR3 chemokine receptors. These findings suggest that CCL24 may influence the kinetics of chemokines and their receptors and eosinophils recruitment during human acute schistosomiasis mansoni.
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.