1000 resultados para Espectroscopia eletrónica
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
Nanostructured materials have been spreading successfully over past years due its size and unusual properties, resulting in an exponential growth of research activities devoted to nanoscience and nanotechnology, which has stimulated the search for different methods to control main properties of nanomaterials and make them suitable for applications with high added value. In the late 90 s an alternative and low cost method was proposed from alkaline hydrothermal synthesis of nanotubes. Based on this context, the objective of this work was to prepare different materials based on TiO2 anatase using hydrothermal synthesis method proposed by Kasuga and submit them to an acid wash treatment, in order to check the structural behavior of final samples. They were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), adsorption/desorption of N2, thermal analysis (TG/DTA) and various spectroscopic methods such as absorption spectroscopy in the infrared (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All the information of characterizations confirmed the complete conversion of anatase TiO2 in nanotubes titanates (TTNT). Observing the influence of acid washing treatment in titanates structure, it was concluded that the nanotubes are formed during heat treatment, the sample which was not subjected to this process also achieved a complete phase transformation, as showed in crystallography and morphology results, however the surface area of them practically doubled after the acid washing. By spectroscopy was performed a discussion about chemical composition of these titanates, obtaining relevant results. Finally, it was observed that the products obtained in this work are potential materials for various applications in adsorption, catalysis and photocatalysis, showing great promise in CO2 capture
Resumo:
The ferrite composition Ni1 - xCoxFe2O4 (0 ≤ x ≤ 0.75) were obtained by the method of microwave assisted synthesis and had their structural and magnetic properties evaluated due to the effect of the substitution of Ni by Co. The compounds were prepared: according to the concept of chemical propellants and heated in the microwave oven with power 7000kw. The synthesized material was characterized by absorption spectroscopy in the infrared (FTIR), Xray diffraction (XRD) using the Rietveld refinement, specific surface area (BET) , scanning electron microscopy (SEM) with aid of energy dispersive analysis (EDS) and magnetic measurements (MAV). The results obtained from these techniques confirmed the feasibility of the method of synthesis employed to obtain the desired spinel structure, the ferrite, nickel ferrite as for nickel doped with cobalt. The results from XRD refinement ally showed the formation of secondary phases concerning stages α - Fe2O3, FeO, (FeCo)O e Ni0. On the other hand, there is an increase in crystallite size with the increase of cobalt in systems, resulting in an increased crystallinity. The results showed that the BET systems showed a reduction in specific surface area with the increase of cobalt and from the SEM, the formation of irregular porous blocks and that the concentration of cobalt decreased the agglomerative state of the system. The magnetic ferrites studied showed different characteristics according to the amount of dopant used, ranging from a very soft magnetic material (easy magnetization and demagnetization ) - for the system without cobalt - a magnetic material with a little stiffer behavior - for systems containing cobalt. The values of the coercive field increased with the increasing growth of cobalt, and the values of saturation magnetization and remanence increased up to x = 0,25 and then reduced. The different magnetic characteristics presented by the systems according to the amount of dopant used, allows the use of these materials as intermediates magnetic
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The aim of this study was to generate an asymmetric biocompactible and biodegradable chitosan membrane modified by the contact with a poly(acrylic acid) solution at one of its sides at room temperature and 60◦C. The pure chitosan membrane, as well as the ones treated with poly(acrylic acid) were characterized by infrared spectroscopy (FTIRATR) at angles of 39◦, 45◦ and 60◦ , swelling capacity in water, thermal analysis (TG/DTG), scanning electronic microscopy (SEM) and permeation experiments using metronidazole at 0,1% and 0,2% as a model drug. The results confirmed the presence of ionic interaction between chitosan and poly(acrylic acid) by means of a polyelectrolyte complex (PEC) formation. They also showed that such interactions were more effective at 60◦C since this temperature is above the chitosan glass transition temperature wich makes the diffusion of poly(acrylic acid) easier, and that the two treated membranes were asymmetrics, more thermically stable and less permeable in relation to metronidazole than the pure chitosan membrane
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction
Resumo:
The chemical recycling of polyolefins has been the focus of increasing attention owing potential application as a fuel and as source chemicals. The use of plastic waste contributes to the solution of pollution problems.The use of catalysts can enhance the thermal degradation of synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass spectrometry (MS) combined techniques. This work aims to propose alternatives to the chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15 and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl and water. As structure template was used Pluronic P123. The syntheses were accomplished during the period of three days. The best calcination conditions for removal of the organic template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron microscopy (SEM) was verified that as much the hydrothermal synthesis method as the calcination by TG were promising for the production of mesoporous materials with high degree of hexagonal ordination. The general analysis of the method of Analog Scan was performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high temperatures. Thus, with the results, we observed signs mass/charge more evident and, using the MID method, was obtained curve of evolution of these signals. The addition of catalysis produced a decrease in temperature of polymer degradation proportional to the acidity of the catalyst. The results showed that the mesoporous materials contributed to the formation of compounds of lower molecular weight and higher value in the process of catalytic degradation of LDPE, representing an alternative to chemical recycling of solid waste
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
Bifunctional catalysts based on zircon oxide modified by tungsten (W = 10, 15 and 20 %) and by molybdenum oxide (Mo= 10, 15 e 20 %) containg platinum (Pt = 1%) were prepared by the polymeric precursor method. For comparison, catalysts the tungsten base was also prepared by the impregnation method. After calcinations at 600, 700 and 800 ºC, the catalysts were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, nitrogen adsorption and scanning electron microscopy. The profile of metals reduction was determined by temperature programmed reduction. The synthesized catalysts were tested in n-heptane isomerization. X-ray diffractogram of the Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts revealed the presence of tetragonal ZrO2 and platinum metallic phases in all calcined samples. Diffraction peaks due WO3 and ZrO2 monoclinic also were observed in some samples of the Pt/WOx-ZrO2 catalysts. In the Pt/MoOx-ZrO2 catalysts also were observed diffraction peaks due ZrO2 monoclinic and Zr(MoO4)2 oxide. These phases contained on Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts varied in accordance with the W or Mo loading and in accordance with the calcination temperature. The infrared spectra showed absorption bands due O-W-O and W=O bonds in the Pt/WOx-ZrO2 catalysts and due O-Mo-O, Mo=O and Mo-O bonds in the Pt/MoOx-ZrO2 catalysts. Specific surface area for Pt/WOx-ZrO2 catalysts varied from 30-160 m2 g-1 and for the Pt/MoOx-ZrO2 catalysts varied from 10-120 m2 g-1. The metals loading (W or Mo) and the calcination temperature influence directly in the specific surface area of the samples. The reduction profile of Pt/WOx-ZrO2 catalysts showed two peaks at lower temperatures, which are attributed to platinum reduction. The reduction of WOx species was evidenced by two reduction peak at high temperatures. In the case of Pt/MoOx-ZrO2 catalysts, the reduction profile showed three reduction events, which are attributed to reduction of MoOx species deposited on the support and in some samples one of the peak is related to the reduction of Zr(MoO4)2 oxide. Pt/WOx-ZrO2 catalysts were active in the n-heptane isomerization with high selectivity to 3-methyl-hexane, 2,3- dimethyl-pentane, 2-methyl-hexane among other branched hydrocarbons. The Pt/MoOx-ZrO2 catalysts practically didn't present activity for the n-heptane isomerization, generating mainly products originating from the catalytic cracking
Resumo:
In this experimental study sintetic samples of Jacobsites (MnFe2O4) were synthesized by the Pechini method and calcined within ambient atmosphere and afterwards in the vacuum from 400 to 700ºC, the range of calcination temperatures. The X-Ray Diffraction (XRD) and the Scanning Electronic Microscopy (SEM) analysis have shown that the samples treated at 400ºC temperature are composed by a simple type of spinel phase, with a crystallite size of 8:8nm for the sample calcined in ambient atmosphere and 20; 1nm for the sample treated in the vacuum, showing that the cristallite average size can be manipulated by the atmosphere control. The hysteresis loops for the sample calcined at 400ºC in ambient atmosphere reveal features of superparamagnetic behavior with magnetization 29:3emu=g at the maximum field of 1:2T. The sample calcined in 400oC under vacuum show magnetization = 67emu=g at the maximum field of 1:5T. The sample treated at 500oC, under ambient atmosphere, has shown besides the spinel phase, secondary phases of hematite (Fe2O3) and bixbyite (FeMnO3). The hysteresis loops demonstrate a sharp drop of the magnetization compared to the previous sample. The analysis has revealed that for the samples treated in higher temperatures (600ºC and 700ºC) its observed the absence of the spinel phase and the maintenance of the bixbyite and hematite. The hysteresis loops for those samples in accordance to the external magnetic field are straight lines crossing the origin, consistent with the antiferromagnetic behavior of the phases.The Mössbauer espectroscopy show to the sample calcined at 400ºC within ambiente atmosphere two sextet and one doublet. The two sextets are assigned to the hyperfine fields related to the magnetic deployment in the nuclei of Fe3+ ions, at the tetraedric and octaedric sites. The doublet is assigned to superparamagnetic behavior of the particles with smaller diameter than dc . Now the sample calcined at 400ºC under vacuum only show two sextet
Resumo:
Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation
Resumo:
In this thesis, we study the thermo-electronic properties of the DNA molecule. For this purpose, we used three types of models with the DNA, all assuming a at geometry (2D), each built by a sequence of quasiperiodic (Fibonacci and / or Rudin-Shapiro) and a sequence of natural DNA, part of the human chromosome Ch22. The first two models have two types of components that are the nitrogenous bases (guanine G, cytosine C, adenine A and thymine T) and a cluster sugar-phosphate (SP), while the third has only the nitrogenous bases. In the first model we calculate the density of states using the formalism of Dyson and transmittance for the time independent Schr odinger equation . In the second model we used the renormalizationprocedure for the profile of the transmittance and consequently the I (current) versus V (voltage). In the third model we calculate the density of states formalism by Dean and used the results together with the Fermi-Dirac statistics for the chemical potential and the quantum specific heat. Finally, we compare the physical properties found for the quasi-periodic sequences and those that use a portion of the genomic DNA sequence (Ch22).
Resumo:
In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss