956 resultados para Engineering, Mechanical|Energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent (R) was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancy-driven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-epsilon turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents an overview of relevant issues to be considered in the development of standardized phytochemical preparations, focusing on the use of the spouted bed as a drying method. Aspects related to the effects of feed composition properties and processing parameters on system performance and product quality are addressed. From the information presented, it can be concluded that the spouted bed technology can be successfully applied for production of high-quality phytochemical preparations suitable for food and pharmaceutical purposes, considering the requirements for product safety, quality, and efficacy. Nevertheless, it should be emphasized that, at this time, the proposed technology is appropriate for small-scale production, mainly due to difficulties concerning scale-up, modeling, and the simulation of spouted bed systems, and also for predicting product properties and system behavior during operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this paper is to show the dependence relationship between the crystallographic orientations upon brittle-to-ductile transition during diamond turning of monocrystalline silicon. Cutting tests were performed using a -5 degrees rake angle round nose diamond tool at different machining scales. At the micrometre level, the feedrate was kept constant at 2.5 micrometres per revolution (mu m/r), and the depth of cut was varied from 1 to 5 mu m. At the submicrometre level, the depth of cut was kept constant at 500 nm and the feedrate varied from 5 to 10 mu m/r. At the micrometre level, the uncut shoulder generated with an interrupted cutting test procedure provided a quantitative measurement of the ductile-to-brittle transition. Results show that the critical chip thickness in silicon for ductile material removal reaches a maximum of 285 nm in the [100] direction and a minimum of 115 nm in the [110] direction, when the depth of cut was 5 mu m. It was found that when a submicrometre depth of cut was applied, microcracks were revealed in the [110] direction, which is the softer direction in silicon. Micro Raman spectroscopy was used to estimate surface residual stress after machining. Compressive residual stress in the range 142 MPa and smooth damage free surface finish was probed in the [100] direction for a depth of cut of 5 mu m, whereas residual stresses in the range 350 MPa and brittle damage was probed in the [110] direction for a depth of cut of 500 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of vehicle dynamics, commercial software can aid the designer during the conceptual and detailed design phases. Simulations using these tools can quickly provide specific design metrics, such as yaw and lateral velocity, for standard maneuvers. However, it remains challenging to correlate these metrics with empirical quantities that depend on many external parameters and design specifications. This scenario is the case with tire wear, which depends on the frictional work developed by the tire-road contact. In this study, an approach is proposed to estimate the tire-road friction during steady-state longitudinal and cornering maneuvers. Using this approach, a qualitative formula for tire wear evaluation is developed, and conceptual design analyses of cornering maneuvers are performed using simplified vehicle models. The influence of some design parameters such as cornering stiffness, the distance between the axles, and the steer angle ratio between the steering axles for vehicles with two steering axles is evaluated. The proposed methodology allows the designer to predict tire wear using simplified vehicle models during the conceptual design phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I. D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m(2) s, heat fluxes from 10 to 300 kW/m(2), exit saturation temperatures of 25, 31 and 35 degrees C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions. [DOI: 10.1115/1.4004933]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress-strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper presents a theoretical analysis of a cross flow heat exchanger with a new flow arrangement comprehending several tube rows. The thermal performance of the proposed flow arrangement is compared with the thermal performance of a typical counter cross flow arrangement that is used in chemical, refrigeration, automotive and air conditioning industries. The thermal performance comparison has been performed in terms of the following parameters: heat exchanger effectiveness and efficiency, dimensionless entropy generation, entransy dissipation number, and dimensionless local temperature differences. It is also shown that the uniformity of the temperature difference field leads to a higher thermal performance of the heat exchanger. In the present case this is accomplished thorough a different organization of the in-tube fluid circuits in the heat exchanger. The relation between the recently introduced "entransy dissipation number" and the conventional thermal effectiveness has been obtained in terms of the "number of transfer units". A case study has been solved to quantitatively to obtain the temperature difference distribution over two rows units involving the proposed arrangement and the counter cross flow one. It has been shown that the proposed arrangement presents better thermal performance regardless the comparison parameter. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A nonlinear analysis is performed for the purpose of identification of the pitch freeplay nonlinearity and its effect on the type of bifurcation of a two degree-of-freedom aeroelastic system. The databases for the identification are generated from experimental investigations of a pitch-plunge rigid airfoil supported by a nonlinear torsional spring. Experimental data and linear analysis are performed to validate the parameters of the linearized equations. Based on the periodic responses of the experimental data which included the flutter frequency and its third harmonics, the freeplay nonlinearity is approximated by a polynomial expansion up to the third order. This representation allows us to use the normal form of the Hopf bifurcation to characterize the type of instability. Based on numerical integrations, the coefficients of the polynomial expansion representing the freeplay nonlinearity are identified. Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.