891 resultados para Encyclopedias and dictionaries, Hungarian.
Resumo:
The story of the 1956 Hungarian Revolution at sixty years remains contested. The current center-right government led by Prime Minister Viktor Orbán at once embraces the Revolution and yet at the same time trumpets the failure of the liberal states of the West. Hungarians are encouraged to view the authoritarian politics of Vladmir Putin as a successful model worthy of emulation. In this light the liberal state envisioned by many of the revolutionaries, let alone the liberal state expected by the European Union stands in contrast with one of the principal tenets of the ruling FIDESz/Christian Democrat (KDNP) coalition. At the same time, the current yearning for an illiberal state accords with a strand of desire more akin to those who supported Cardinal Mindszenty during the Revolution and by extension his sympathy for the authoritarian regime of Miklós Horthy.
Resumo:
This study applies theories of cognitive linguistics to the compilation of English learners’ dictionaries. Specifically, it employs the concepts of basic level categories and image schemas, two basic cognitive experiences, to examine the ‘definition proper’ of English dictionaries for foreign learners. In the study, the definition proper refers to the constituent part of a reference work that provides an explanation of the meanings of a word, phrase or term. This rationalization mainly consists of defining vocabulary, sense division and arrangement, as well as the means of defining (i.e. paraphrase, true definition, functional definition, and pictorial illustration). The aim of the study is to suggest ways of aligning the consultation and learning of definitions with dictionary users’ cognitive experiences. For this purpose, an analysis of the definition proper of the fourth edition of the Longman Dictionary of Contemporary English (LDOCE4) from the perspective of basic cognitive experiences has been undertaken. The study found that, generally, the lexicographic practices of LDOCE4 are consistent with theories of cognitive linguistics. However, there exist shortcomings that result from disregarding basic cognitive experiences.
Resumo:
Australian Aboriginal Words in English records the Aboriginal contribution to Australian English and provides a fascinating insight into the contact between the first Australians and European settlers. The words are grouped according to subject, and for each one there is information on the Aboriginal language from which it derives, the date of its first written use in English, and its present meaning and pronunciation. This book brings them together and provides the fullest available information about their Aboriginal background and their Australian English History.
Resumo:
The work is based on the assumption that words with similar syntactic usage have similar meaning, which was proposed by Zellig S. Harris (1954,1968). We study his assumption from two aspects: Firstly, different meanings (word senses) of a word should manifest themselves in different usages (contexts), and secondly, similar usages (contexts) should lead to similar meanings (word senses). If we start with the different meanings of a word, we should be able to find distinct contexts for the meanings in text corpora. We separate the meanings by grouping and labeling contexts in an unsupervised or weakly supervised manner (Publication 1, 2 and 3). We are confronted with the question of how best to represent contexts in order to induce effective classifiers of contexts, because differences in context are the only means we have to separate word senses. If we start with words in similar contexts, we should be able to discover similarities in meaning. We can do this monolingually or multilingually. In the monolingual material, we find synonyms and other related words in an unsupervised way (Publication 4). In the multilingual material, we ?nd translations by supervised learning of transliterations (Publication 5). In both the monolingual and multilingual case, we first discover words with similar contexts, i.e., synonym or translation lists. In the monolingual case we also aim at finding structure in the lists by discovering groups of similar words, e.g., synonym sets. In this introduction to the publications of the thesis, we consider the larger background issues of how meaning arises, how it is quantized into word senses, and how it is modeled. We also consider how to define, collect and represent contexts. We discuss how to evaluate the trained context classi?ers and discovered word sense classifications, and ?nally we present the word sense discovery and disambiguation methods of the publications. This work supports Harris' hypothesis by implementing three new methods modeled on his hypothesis. The methods have practical consequences for creating thesauruses and translation dictionaries, e.g., for information retrieval and machine translation purposes. Keywords: Word senses, Context, Evaluation, Word sense disambiguation, Word sense discovery.
Resumo:
In this study I look at what people want to express when they talk about time in Russian and Finnish, and why they use the means they use. The material consists of expressions of time: 1087 from Russian and 1141 from Finnish. They have been collected from dictionaries, usage guides, corpora, and the Internet. An expression means here an idiomatic set of words in a preset form, a collocation or construction. They are studied as lexical entities, without a context, and analysed and categorized according to various features. The theoretical background for the study includes two completely different approaches. Functional Syntax is used in order to find out what general meanings the speaker wishes to convey when talking about time and how these meanings are expressed in specific languages. Conceptual metaphor theory is used for explaining why the expressions are as they are, i.e. what kind of conceptual metaphors (transfers from one conceptual domain to another) they include. The study has resulted in a grammatically glossed list of time expressions in Russian and Finnish, a list of 56 general meanings involved in these time expressions and an account of the means (constructions) that these languages have for expressing the general meanings defined. It also includes an analysis of conceptual metaphors behind the expressions. The general meanings involved turned out to revolve around expressing duration, point in time, period of time, frequency, sequence, passing of time, suitable time and the right time, life as time, limitedness of time, and some other notions having less obvious semantic relations to the others. Conceptual metaphor analysis of the material has shown that time is conceptualized in Russian and Finnish according to the metaphors Time Is Space (Time Is Container, Time Has Direction, Time Is Cycle, and the Time Line Metaphor), Time Is Resource (and its submapping Time Is Substance), Time Is Actor; and some characteristics are added to these conceptualizations with the help of the secondary metaphors Time Is Nature and Time Is Life. The limits between different conceptual metaphors and the connections these metaphors have with one another are looked at with the help of the theory of conceptual integration (the blending theory) and its schemas. The results of the study show that although Russian and Finnish are typologically different, they are very similar both in the needs of expression their speakers have concerning time, and in the conceptualizations behind expressing time. This study introduces both theoretical and methodological novelties in the nature of material used, in developing empirical methodology for conceptual metaphor studies, in the exactness of defining the limits of different conceptual metaphors, and in seeking unity among the different facets of time. Keywords: time, metaphor, time expression, idiom, conceptual metaphor theory, functional syntax, blending theory
Resumo:
Otto Gersuny graduated with a degree in medicine from the University of Vienna in June 1914. He attributed his being a doctor to his survival of World War I.
Resumo:
Analytical solutions are presented for the effectiveness factor of a zeroth-order reaction with volume change and nonuniform catalyst activity profile in slab, cylinder and spherical pellets. The possibility of shape normalization is considered for a variety of activity profiles and pellet shapes. When the catalyst activity at the external surface of the pellet is non-zero, shape normalization is obtained, which makes the asymptotic behavior of the effectiveness factor identical for small and large values of Thiele modulus, however, the normalization can lead to significant errors, particularly for the case of activity profiles decreasing towards the outer surface of the catalyst.
Resumo:
CD-ROMs have proliferated as a distribution media for desktop machines for a large variety of multimedia applications (targeted for a single-user environment) like encyclopedias, magazines and games. With CD-ROM capacities up to 3 GB being available in the near future, they will form an integral part of Video on Demand (VoD) servers to store full-length movies and multimedia. In the first section of this paper we look at issues related to the single- user desktop environment. Since these multimedia applications are highly interactive in nature, we take a pragmatic approach, and have made a detailed study of the multimedia application behavior in terms of the I/O request patterns generated to the CD-ROM subsystem by tracing these patterns. We discuss prefetch buffer design and seek time characteristics in the context of the analysis of these traces. We also propose an adaptive main-memory hosted cache that receives caching hints from the application to reduce the latency when the user moves from one node of the hyper graph to another. In the second section we look at the use of CD-ROM in a VoD server and discuss the problem of scheduling multiple request streams and buffer management in this scenario. We adapt the C-SCAN (Circular SCAN) algorithm to suit the CD-ROM drive characteristics and prove that it is optimal in terms of buffer size management. We provide computationally inexpensive relations by which this algorithm can be implemented. We then propose an admission control algorithm which admits new request streams without disrupting the continuity of playback of the previous request streams. The algorithm also supports operations such as fast forward and replay. Finally, we discuss the problem of optimal placement of MPEG streams on CD-ROMs in the third section.
Resumo:
Compressive Sensing (CS) is a new sensing paradigm which permits sampling of a signal at its intrinsic information rate which could be much lower than Nyquist rate, while guaranteeing good quality reconstruction for signals sparse in a linear transform domain. We explore the application of CS formulation to music signals. Since music signals comprise of both tonal and transient nature, we examine several transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT), Fourier basis and also non-orthogonal warped transforms to explore the effectiveness of CS theory and the reconstruction algorithms. We show that for a given sparsity level, DCT, overcomplete, and warped Fourier dictionaries result in better reconstruction, and warped Fourier dictionary gives perceptually better reconstruction. “MUSHRA” test results show that a moderate quality reconstruction is possible with about half the Nyquist sampling.
Resumo:
Tight fusion frames which form optimal packings in Grassmannian manifolds are of interest in signal processing and communication applications. In this paper, we study optimal packings and fusion frames having a specific structure for use in block sparse recovery problems. The paper starts with a sufficient condition for a set of subspaces to be an optimal packing. Further, a method of using optimal Grassmannian frames to construct tight fusion frames which form optimal packings is given. Then, we derive a lower bound on the block coherence of dictionaries used in block sparse recovery. From this result, we conclude that the Grassmannian fusion frames considered in this paper are optimal from the block coherence point of view. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.