505 resultados para Electromyography.
Resumo:
Objective To assess the diagnostic accuracy of the surface electromyography (sEMG) parameters associated with referred anterior knee pain in diagnosing patellofemoral pain syndrome (PFPS). Design Sensitivity and specificity analysis. Setting Physical rehabilitation center and laboratory of biomechanics and motor control. Participants Pain-free subjects (n=29) and participants with PFPS (n=22) selected by convenience. Interventions Not applicable. Main Outcome Measure The diagnostic accuracy was calculated for sEMG parameters’ reliability, precision, and ability to differentiate participants with and without PFPS. The selected sEMG parameter associated with anterior knee pain was considered as an index test and was compared with the reference standard for the diagnosis of PFPS. Intraclass correlation coefficient, SEM, independent t tests, sensitivity, specificity, negative and positive likelihood ratios, and negative and positive predictive values were used for the statistical analysis. Results The medium-frequency band (B2) parameter was reliable (intraclass correlation coefficient=.80–.90), precise (SEM=2.71–3.87 normalized unit), and able to differentiate participants with and without PFPS (P<.05). The association of B2 with anterior knee pain showed positive diagnostic accuracy values (specificity, .87; sensitivity, .70; negative likelihood ratio, .33; positive likelihood ratio, 5.63; negative predictive value, .72; and positive predictive value, .86). Conclusions The results provide evidence to support the use of EMG signals (B2 – frequency band of 45–96Hz) of the vastus lateralis and vastus medialis muscles with referred anterior knee pain in the diagnosis of PFPS.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.
Resumo:
Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).
Resumo:
This study investigated the acute effect of static stretching exercises (SSE) on maximum strength (MS) and strength endurance (SE) performance in lower and upper limbs. Thirteen volunteers participated in the study and were submitted to MS and SE (70% 1RM) tests in the bench press and squat exercises with or without SSE. The paired T test showed that the SSE decreased MS in the squat (141.2 +/- 34.2 vs 132 +/- 34.9kg, p=0.007) and in the BP (77.5 +/- 21.7 vs 71.7 +/- 17.7kg p=0.04). Squat SE was not affected by SSE (16.2 +/- 5.7 vs 16.3 +/- 6.8 repetitions p=0.48). On the other hand, bench press SE decreased significantly after SSE (11.7 +/- 4.8 vs 9.9 +/- 5.1 repetitions p=0.008). Therefore, SSE impaired MS performance on upper and lower limbs but SE was affected only on upper limbs. This difference in SE may be related to the stretching exercises volume applied to the size of each muscle group.
Resumo:
We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. Muscle Nerve, 2012
Resumo:
This study, using surface electromyography, analyzed the activity of the masseter muscles of 30 patients with facial bone fractures that were surgically treated. Evaluations were made before surgery and in the 7th, 30th, and 60th days after surgery. The value of each measure and the average of 3 maximum voluntary isometric contractions lasting 5 seconds each were registered, and statistical analyses were performed. Patients had a mean age of 31 years and an average of 1.33 fractures. They were grouped according to the type of fracture as follows: mandibular (50%), zygomatic complex (33%), maxilla (10%), and associated fractures (6.7%). There was a lower masseter activity in the preoperative period, when compared with normal values in all groups of fractures. There was a sharp drop in the masseter activity in the postoperative period of 7 days, and all groups showed recovery of activity in 60 days but still below the normal value referenced in the literature. The mean values of the masseter activity, in descending order, were from the zygomatic complex, mandibular, maxillary, and associated fractures. The unilateral mandibular fractures showed higher values than the bilateral fractures in most of the evaluations. There was a highly significant difference in the comparison of the evolution of the masseter activity on both sides, for mandibular and zygomatic complex fractures, and the pairwise comparison showed significant difference between most groups. It was concluded that facial fractures and surgical procedures had negative effects in the muscle activity as observed using electromyography.
Resumo:
Twelve participants ran (9 km . h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P <= 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P <= 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P <= 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P <= 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.
Resumo:
The Lucia jig is a technique that promotes neuromuscular reprogramming of the masticatory system and allows the stabilization of the mandible without the interference of dental contacts, maintaining the mandible position in harmonic condition with the musculature in normal subjects or in patients with temporomandibular dysfunction (TMD). This study aimed to electromyographically analyze the activity (RMS) of the masseter and temporal muscles in normal subjects (control group) during the use of an anterior programming device, the Lucia jig, in place for 0, 5, 10, 20 and 30 minutes to demonstrate its effect on the stomatognathic system. Forty-two healthy dentate individuals (aged 21 to 40 years) with normal occlusion and without parafunctional habits or ternporomandibular dysfunction (RDC/TMD) were evaluated on the basis of the electromyographic activity of the masseter and temporal muscles before placement of a neuromuscular re-programming device, the Lucia jig, on the upper central incisors. There were no statistically significant differences (p < 0.05) in the electromyographic activity of the masticatory muscles in the different time periods. The Lucia jig changed the electromyographic activity by promoting a neuromuscular reprogramming. In most of the time periods, it decreased the activation of the masticatory muscles, showing that this device has wide applicability in dentistry. The use of a Lucia jig over 0, 5, 10, 15, 20 and 30 minutes did not promote any statistically significant increase in muscle activity despite differences in the data, thus showing that this intra-oral device can be used in dentistry.
Resumo:
Background: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. Objectives: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB) shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. Methods: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA) acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS) of the BGA and the post-stimulus muscle activation were computed. Results: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC) generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. Conclusions: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.