800 resultados para Ecological risk assessment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Organisation for Economic Co-operation and Development (OECD) Terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared to two species recommended by the OECD; Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadow-grass) had low emergence rates in the control soil so may be considered unsuitable. Festuca rubra (chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disordered occupation in several cities in Brazil, is very common, especially during the rainy season, there are numerous cases of gravitational mass movements, with deads of human and builds destruction. The main objective of this work was to identify and map areas to mass movements, through the geo, the municipality of Várzea Paulista, the state of Sao Paulo. For the purpose, were prepared thematic maps of slope, geology, pedology, geomorphology and land use and occupation, which were overlaid using ArcGIS GIS Multicriteria Analysis. Each subject received a weight of influence to the outbreak of such processes and the final result was obtained map of susceptibility to mass movements of the city of Várzea Paulista. This survey found that there are many occupied areas within the city that require monitoring of the Government, especially in the rainy months, because they are in very fragile in terms of geological and geomorphological features. Considering that the data on the physical and natural aspects are scarce in the literature for this region, the results obtained in this study as well as the gathering of information of the physical and cartographic products developed, will greatly contribute to the administration of the municipality, subsidies they provide for the proper use planning and land tenure, pointing out the weak areas of the city geotechnical point of view

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variability of toxicity data contained within databases was investigated using the widely used US EPA ECOTOX database as an example. Fish acute lethality (LC50) values for 44 compounds (for which at least 10 data entries existed) were extracted from the ECOTOX database yielding a total of 4654 test records. Significant variability of LC50 test results was observed, exceeding several orders of magnitude. In an attempt to systematically explore potential causes of the data variability, the influence of biological factors (such as test species or life stages) and physical factors (such as water temperature, pH or water hardness) were examined. Even after eliminating the influence of these inherent factors, considerable data variability remained, suggesting an important role of factors relating to technical and measurement procedures. The analysis, however, was limited by pronounced gaps in the test documentation. Of the 4654 extracted test reports, 66.5% provided no information on the fish life stage used for testing. Likewise, water temperature, hardness or pH were not recorded in 19.6%, 48.2% and 41.2% of the data entries, respectively. From these findings, we recommend the rigorous control of data entries ensuring complete recording of testing conditions. A more consistent database will help to better discriminate between technical and natural variability of the test data, which is of importance in ecological risk assessment for extrapolation from laboratory tests to the field, and also might help to develop correction factors that account for systematic differences in test results caused by species, life stage or test conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene flow is the movement of genes from one plant population to another. Gene flow is a natural process and a part of plant evolution. There are two ways for gene flow to occur in plants. The first is through sexual reproduction – pollen lands on a flower and a viable seed develops. The second method is through dispersal of seeds and/or vegetative plant parts (e.g. stolons, rhizomes). Gene flow can produce hybrid offspring with an increased or decreased ability to survive in the landscape. If hybrid offspring have some advantage in the environment, they could become invasive. This poster shows two examples of gene flow in plants and the potential for environmental damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o advento da agricultura ampliou-se a produção alimentar e os bens de consumo, no entanto, os riscos ambientais também foram maximizados em função da adoção de técnicas produtivas baseadas no uso intensivo de insumos agrícolas. Esta problemática é mundial, embora mais evidenciada nos países em desenvolvimento e que tem, na produção agrícola, a base de sua economia. O Brasil enquadra-se nesta situação e desde 2009 é considerado o maior consumidor de agrotóxicos do mundo, criando um cenário de risco ambiental e de saúde humana. Os efeitos ambientais, base deste estudo, estão relacionados não somente à perda de espécies não-alvo, uma vez que os agrotóxicos não são seletivos, mas também as alterações em nível ecossistêmico, a qual se relaciona com as perdas das funções e dos serviços gerados pelos sistemas naturais. Adiciona-se a esta complexidade, a forma de ação de cada agrotóxico, a distribuição dos mesmos nos diferentes compartimentos (ar, solo e água), o período de permanência de cada um, as relações sinérgicas decorrentes das interações entre diferentes produtos, a formação de subprodutos no processo de degradação, entre outros fatores, como as diferenças existentes entre o ingrediente ativo e a formulação comercial, na qual existem os chamados ingredientes inertes em sua composição, os quais podem ser muito mais tóxicos para espécies e ecossistemas. Considerando esta abordagem, a presente pesquisa foi desenvolvida com base na realidade de um local de referência, o município de Bom Repouso (MG/BR), no qual a intensificação da produção de morango e batata tem trazido uma série de riscos sociais e ambientais. Semelhante a outras regiões produtivas do país, o uso de agrotóxicos é recorrente, amplo e irrestrito, com destaque para as formulações comerciais Kraft®36EC e Score®250EC, as quais, juntamente com seus respectivos ingredientes ativos (abamectina e difenoconazol), foram avaliadas por meio de testes de toxicidade com espécies de diferentes níveis tróficos representativas de um ecossistema aquático, gerando informações que foram avaliadas em nível de espécie e de ecossistema, simulando o cenário de aplicação dos produtos no local de referência. Os resultados obtidos permitiram concluir sobre as diferenças de sensibilidade das espécies e quais seriam as mais indicadas para se avaliar os efeitos tóxicos de ambos os agrotóxicos; os efeitos diferenciados entre a formulação comercial e os ingredientes ativos; bem como as respostas em termos de espécies e de ecossistemas, demonstrando a necessidade de que ambas as análises sejam consideradas na avaliação de risco ecológico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freshwater is extremely precious; but even more precious than freshwater is clean freshwater. From the time that 2/3 of our planet is covered in water, we have contaminated our globe with chemicals that have been used by industrial activities over the last century in a unprecedented way causing harm to humans and wildlife. We have to adopt a new scientific mindset in order to face this problem so to protect this important resource. The Water Framework Directive (European Parliament and the Council, 2000) is a milestone legislative document that transformed the way that water quality monitoring is undertaken across all Member States by introducing the Ecological and Chemical Status. A “good or higher” Ecological Status is expected to be achieved for all waterbodies in Europe by 2015. Yet, most of the European waterbodies, which are determined to be at risk, or of moderate to bad quality, further information will be required so that adequate remediation strategies can be implemented. To date, water quality evaluation is based on five biological components (phytoplankton, macrophytes and benthic algae, macroinvertebrates and fishes) and various hydromorphological and physicochemical elements. The evaluation of the chemical status is principally based on 33 priority substances and on 12 xenobiotics, considered as dangerous for the environment. This approach takes into account only a part of the numerous xenobiotics that can be present in surface waters and could not evidence all the possible causes of ecotoxicological stress that can act in a water section. The mixtures of toxic chemicals may constitute an ecological risk not predictable on the basis of the single component concentration. To improve water quality, sources of contamination and causes of ecological alterations need to be identified. On the other hand, the analysis of the community structure, which is the result of multiple processes, including hydrological constrains and physico-chemical stress, give back only a “photograph” of the actual status of a site without revealing causes and sources of the perturbation. A multidisciplinary approach, able to integrate the information obtained by different methods, such as community structure analysis and eco-genotoxicological studies, could help overcome some of the difficulties in properly identifying the different causes of stress in risk assessment. In synthesis, the river ecological status is the result of a combination of multiple pressures that, for management purposes and quality improvement, have to be disentangled from each other. To reduce actual uncertainty in risk assessment, methods that establish quantitative links between levels of contamination and community alterations are needed. The analysis of macrobenthic invertebrate community structure has been widely used to identify sites subjected to perturbation. Trait-based descriptors of community structure constitute a useful method in ecological risk assessment. The diagnostic capacity of freshwater biomonitoring could be improved by chronic sublethal toxicity testing of water and sediment samples. Requiring an exposure time that covers most of the species’ life cycle, chronic toxicity tests are able to reveal negative effects on life-history traits at contaminant concentrations well below the acute toxicity level. Furthermore, the responses of high-level endpoints (growth, fecundity, mortality) can be integrated in order to evaluate the impact on population’s dynamics, a highly relevant endpoint from the ecological point of view. To gain more accurate information about potential causes and consequences of environmental contamination, the evaluation of adverse effects at physiological, biochemical and genetic level is also needed. The use of different biomarkers and toxicity tests can give information about the sub-lethal and toxic load of environmental compartments. Biomarkers give essential information about the exposure to toxicants, such as endocrine disruptor compounds and genotoxic substances whose negative effects cannot be evidenced by using only high-level toxicological endpoints. The increasing presence of genotoxic pollutants in the environment has caused concern regarding the potential harmful effects of xenobiotics on human health, and interest on the development of new and more sensitive methods for the assessment of mutagenic and cancerogenic risk. Within the WFD, biomarkers and bioassays are regarded as important tools to gain lines of evidence for cause-effect relationship in ecological quality assessment. Despite the scientific community clearly addresses the advantages and necessity of an ecotoxicological approach within the ecological quality assessment, a recent review reports that, more than one decade after the publication of the WFD, only few studies have attempted to integrate ecological water status assessment and biological methods (namely biomarkers or bioassays). None of the fifteen reviewed studies included both biomarkers and bioassays. The integrated approach developed in this PhD Thesis comprises a set of laboratory bioassays (Daphnia magna acute and chronic toxicity tests, Comet Assay and FPG-Comet) newly-developed, modified tacking a cue from standardized existing protocols or applied for freshwater quality testing (ecotoxicological, genotoxicological and toxicogenomic assays), coupled with field investigations on macrobenthic community structures (SPEAR and EBI indexes). Together with the development of new bioassays with Daphnia magna, the feasibility of eco-genotoxicological testing of freshwater and sediment quality with Heterocypris incongruens was evaluated (Comet Assay and a protocol for chronic toxicity). However, the Comet Assay, although standardized, was not applied to freshwater samples due to the lack of sensitivity of this species observed after 24h of exposure to relatively high (and not environmentally relevant) concentrations of reference genotoxicants. Furthermore, this species demonstrated to be unsuitable also for chronic toxicity testing due to the difficult evaluation of fecundity as sub-lethal endpoint of exposure and complications due to its biology and behaviour. The study was applied to a pilot hydrographic sub-Basin, by selecting section subjected to different levels of anthropogenic pressure: this allowed us to establish the reference conditions, to select the most significant endpoints and to evaluate the coherence of the responses of the different lines of evidence (alteration of community structure, eco-genotoxicological responses, alteration of gene expression profiles) and, finally, the diagnostic capacity of the monitoring strategy. Significant correlations were found between the genotoxicological parameter Tail Intensity % (TI%) and macrobenthic community descriptors SPEAR (p<0.001) and EBI (p<0.05), between the genotoxicological parameter describing DNA oxidative stress (ΔTI%) and mean levels of nitrates (p<0.01) and between reproductive impairment (Failed Development % from D. magna chronic bioassays) and TI% (p<0.001) as well as EBI (p<0.001). While correlation among parameters demonstrates a general coherence in the response to increasing impacts, the concomitant ability of each single endpoint to be responsive to specific sources of stress is at the basis of the diagnostic capacity of the integrated approach as demonstrated by stations presenting a mismatch among the different lines of evidence. The chosen set of bioassays, as well as the selected endpoints, are not providing redundant indications on the water quality status but, on the contrary, are contributing with complementary pieces of information about the several stressors that insist simultaneously on a waterbody section providing this monitoring strategy with a solid diagnostic capacity. Our approach should provide opportunities for the integration of biological effects into monitoring programmes for surface water, especially in investigative monitoring. Moreover, it should provide a more realistic assessment of impact and exposure of aquatic organisms to contaminants. Finally this approach should provide an evaluation of drivers of change in biodiversity and its causalities on ecosystem function/services provision, that is the direct and indirect contributions to human well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The Comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fish were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegates and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological risk assessment (ERA) is a framework for monitoring risks of exposure and adverse effects of environmental stressors to populations or communities of interest. One tool of ERA is the biomarker, which is a characteristic of an organism that reliably indicates exposure to or effects of a stressor like chemical pollution. Traditional biomarkers which rely on characteristics at the tissue level and higher often detect only acute exposures to stressors. Sensitive molecular biomarkers may detect lower stressor levels than traditional biomarkers, which helps inform risk mitigation and restoration efforts before populations and communities are irreversibly affected. In this study I developed gene expression-based molecular biomarkers of exposure to metals and insecticides in the model toxicological freshwater amphipod Hyalella azteca. My goals were to not only create sensitive molecular biomarkers for these chemicals, but also to show the utility and versatility of H. azteca in molecular studies for toxicology and risk assessment. I sequenced and assembled the H. azteca transcriptome to identify reference and stress-response gene transcripts suitable for expression monitoring. I exposed H. azteca to sub-lethal concentrations of metals (cadmium and copper) and insecticides (DDT, permethrin, and imidacloprid). Reference genes used to create normalization factors were determined for each exposure using the programs BestKeeper, GeNorm, and NormFinder. Both metals increased expression of a nuclear transcription factor (Cnc), an ABC transporter (Mrp4), and a heat shock protein (Hsp90), giving evidence of general metal exposure signature. Cadmium uniquely increased expression of a DNA repair protein (Rad51) and increased Mrp4 expression more than copper (7-fold increase compared to 2-fold increase). Together these may be unique biomarkers distinguishing cadmium and copper exposures. DDT increased expression of Hsp90, Mrp4, and the immune response gene Lgbp. Permethrin increased expression of a cytochrome P450 (Cyp2j2) and decreased expression of the immune response gene Lectin-1. Imidacloprid did not affect gene expression. Unique biomarkers were seen for DDT and permethrin, but the genes studied were not sensitive enough to detect imidacloprid at the levels used here. I demonstrated that gene expression in H. azteca detects specific chemical exposures at sub-lethal concentrations, making expression monitoring using this amphipod a useful and sensitive biomarker for risk assessment of chemical exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In earlier cultures and societies, hazards and risks to human health were dealt with by methods derived from myth, metaphor and ritual. In modem society however, notions of hazard and risk have been transformed from the level of a folk discourse to that of an expert centred concept (Plough & Krimsky, 1987). With the professionalization of risk and hazard analysis came a preferred framework for decision making based on a range of 'technical' methodologies (Giere, 1991 ). This is especially true for decision processes relating to risk assessment and management, and impact assessment. Such approaches however, often entail narrow technical-based theoretical assumptions about human behaviour and the natural world, and the· methods used. They therefore carry 'in-built' error factors that contribute considerable uncertainty to the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of country status papers on hilsa fisheries presented at the BOBP – IGO Chittagong, Bangladesh 2010. Assessment of status hilsa management in Bangladesh, India and Myanmar. Brief recommendations of potential follow-up activities that could enhance management. Risk assessment of hilsa in each country with Productivity Susceptibility Analysis (PSA). Summary of new approach to assess ecological risk.