1 resultado para Ecological risk assessment
em CaltechTHESIS
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (4)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (59)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (16)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (8)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (26)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (18)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (6)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Nacional de Saúde de Portugal (9)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (50)
- Queensland University of Technology - ePrints Archive (202)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (6)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (8)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- Repositorio Institucional Universidad de Medellín (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (11)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (4)
- University of Connecticut - USA (1)
- University of Michigan (35)
- University of Queensland eSpace - Australia (49)
- University of Southampton, United Kingdom (3)
- University of Washington (6)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.
For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.
To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.
The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.
The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.
Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.
We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.