948 resultados para ENRICHED URANIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The powerful eruption in the Akademii Nauk caldera on January 2, 1996 marked a new activity phase of the Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were used to estimate composition of the parental melt and physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesium, high aluminum basalt (SiO2 = 50.2%, MgO = 5.6%, Al2O3 = 17%) of the mildly potassium type (K2O = 0.56%) and contained much dissolved volatile components (H2O = 2.8%, S = 0.17%, and Cl = 0.11%). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at pressure ~1.5 kbar, proceeded within a narrow temperature range of 1040+/-20°C, and continued until near-surface pressure ~100 bar was reached. Degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under pressure <1 kbar. Magma degassing in an open system resulted in escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. Release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated as 1.7x10**6 t H2O, 1.4x10**5 t S, and 1.5x10**4 t Cl. Concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new high resolution speleothem stable isotope record from the Villars Cave (SW-France) that covers part of marine isotope stage (MIS) 3. The Vil14 stalagmite grew between ~52 and 29 ka. The d13C profile is used as a palaeoclimate proxy and clearly shows the interstadial substages 13, 12 and 11. The new results complement and corroborate previously published stalagmite records Vil9 and Vil27 from the same site. The Vil14 stalagmite chronology is based on 12 Th-U dating by MC-ICP-MS and 3 by TIMS. A correction for detrital contamination was done using the 230Th/232Th activity ratio measured on clay collected in Villars Cave. The Vil14 results reveal that the onset of Dansgaard-Oeschger (DO) events 13 and 12 occurred at ~49.8 ka and ~47.8 ka, respectively. Within uncertainties, this is coherent with the latest NorthGRIP time scale (GICC05-60 ka) and with speleothem records from Central Alps. Our data show an abrupt d13C increase at the end of DO events 14 to 12 which coincides with a petrographical discontinuity probably due to a rapid cooling. As observed for Vil9 and Vil27, Vil14 growth significantly slowed down after ~ 42 ka and finally stopped ~ 29 ka ago where the d13C increase suggests a strong climate deterioration that coincides with both North Atlantic sea level and sea surface temperature drop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ~ 0.7, a SiO2 ~ 1.0, pressure ~ 2 kbar); intra-sample variation is typically ~60-15°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680-740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictable in situ production of 230Th from the decay of uranium in seawater, and its subsequent removal by scavenging onto falling particles, provides a valuable tool for normalizing fluxes to the seafloor. We describe a new application, determination of the 232Th that dissolves in the water column and is removed to the seafloor. 232Th is supplied to the ocean in continental minerals, dissolution of which leads to a measurable standing stock in the water column. Sedimentary adsorbed 232Th/230Th ratios have the potential to provide a proxy for estimating the amount of dissolved material that enters the ocean, both today and in the past. Ten core top samples were treated with up to eight different leaching techniques in order to determine the best method for the separating adsorbed from lattice bound thorium. In addition, separate components of the sediments were analyzed to test whether clay dissolution was an important contribution to the final measurement. There was no systematic correlation between the strength of acid used in the leach and the measured 232Th/230Th ratios. In all cases clean foraminifera produced the same ratio as leaches on bulk sediment. In three out of five samples leaches performed on non-carbonate detritus in the <63 µm size fraction were also identical. Without additional water column data it is not yet clear whether there is a simple one to one correlation between the expected deep-water 232Th/230Th and that produced by leaching, especially in carbonate-rich sediments. However, higher ratios, and associated high 232Th adsorbed fluxes, were observed in areas with high expected detrital inputs. The adsorbed fraction was ~35-50% of the total 232Th in seven out of ten samples. Our 230Th normalized 232Th fluxes are reasonable by comparison to global estimates of detrital inputs to the ocean. In nine cases out of ten, the total 230Th-normalized 232Th flux is greater than predicted from the annual dust fall at each specific location, but lower than the average global detrital input from all sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to geochemical analyses carbonaceous sediments from deep basins of the Baltic Sea containing 3-5% of organic carbon are enriched in some metals such as Cu, Mo, Ni, Pb, Zn, V, and U relative to shallow-water facies of the Bay of Finland. These metals also enrich (relative to background values in clayey rocks) ancient carbonaceous shales, where the average Cu and V contents are slightly higher and that of Mo, Pb, and Zn lower than in deep-sea carbonaceous sediments of the Baltic Sea. In addition, the deep-sea carbonaceous sediments of the Baltic Sea are enriched (but less notably than ancient shales) in Ag, As, Bi, and Cd. These data confirm previous assumptions that carbonaceous sediments accumulating now in seas and oceans can be considered as recent analogs of ancient metalliferous shales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two igneous rock units were recovered at Site 841. More than 200 m of island-arc rhyolites, rhyolitic tuffs, lapilli tuffs, and pumice breccias, divided into five units, compose the basement at the site. These rhyolitic volcanics are late middle Eocene or older and formed part of a subaerial rhyolitic volcano. These low-K rhyolites were produced by fractional crystallization of a more mafic arc-tholeiitic lava or by dehydration melting of lower crustal arc tholeiites. The Site 841 basement rocks are similar in composition to high-SiO2 lavas in the Eocene basement on 'Eua and crystallized from depleted island-arc-tholeiitic basalts like those exposed on 'Eua. No evidence is present in the rhyolites, or in the clasts enclosed within them, for boninite series magmas at Site 841. The Site 841 rhyolitic complex bears no resemblance to Cretaceous rhyolites from the Lord Howe Rise, which are enriched in K and incompatible elements. The volcanic rocks at Site 841 are part of a widely distributed Eocene volcanic episode that marked the earliest phases of subduction in the Tonga region; they are not part of an older crustal fragment. The second igneous sequence is a series of basaltic dikes and sills that intruded Miocene sediments. These basalts have trace element abundances and ratios identical to upper Miocene lavas from the Lau Ridge. The Site 841 basalts do not have any geochemical characteristics that suggest they were generated by unusual thermal conditions in the shallow sub-forearc mantle. They are most reasonably interpreted as intrusions fed by basement dikes propagated from the associated active arc. No evidence for local serpentinite exposures, like those that are common in the Mariana forearc, was found at Site 841. The results from Site 841 provide strong support for hypotheses of forearc evolution that have been advanced for the Izu-Bonin-Mariana system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Middle Jurassic basaltic lavas obtained from Site 801 in the western Pacific Pigafetta Basin represent ocean crust from the oldest segment of the present-day Pacific Ocean. A composite 131 m section shows the basement to be composed of an upper alkalic basalt sequence (about 157 Ma) with ocean island basalt chemical features and a lower tholeiitic basalt sequence (about 167 Ma) with typical normal-type mid-ocean ridge basalt features. The basalt sequences are separated by a quartz-cemented, yellow goethite hydrothermal deposit. Most basalts are altered to some degree and exhibit variable, low-grade smectite-celadonite-pyrite-carbonate-zeolite assemblages developed under a mainly hydrated anoxic environment. Oxidation is very minor, later in development than the hydration assemblages, and largely associated with the hydrothermal deposit. The tholeiitic normal-type mid-ocean ridge basalt has characteristically depleted incompatible element patterns and all compositions are encompassed by recent mid-ocean ridge basalt from the East Pacific Rise. Chemically, the normal-type mid-ocean ridge basalt is divided into a primitive plagioclase-olivine +/- spinel phyric group (Mg* = 72-60) and an evolved (largely) aphyric group of olivine tholeiites (Mg* = 62-40). Both groups form a single comagmatic suite related via open-system fractionation of initial olivine-spinel followed by olivine-plagioclase-clinopyroxene. The alkalic ocean island basalt are largely aphyric and display enriched incompatible element abundances within both relatively primitive olivine-rich basalts and evolved olivine-poor hawaiites related via mafic fractionation. In gross terms, the basement lithostratigraphy is a typical mid-ocean ridge basalt crust, generated at a spreading center, overlain by an off-axis seamount with ocean island basalt chemical characters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometry, timing, and rate of fluid-flow through carbonate margins and platforms is not well constrained. In this study, we use U concentrations and isotope ratios measured on small volumes of pore-water from Bahamas slope sediment, coupled with existing chlorinity data, to place constraints on the fluid-flow in this region and, by implication, other carbonate platforms. These data also allow an assessment of the behaviour of U isotopes in an unusually well constrained water-rock system. We report pore-water U concentrations which are controlled by dissolution of high-U organic material at shallow depths in the sediment and by reduction of U to its insoluble 4+ state at greater depths. The dominant process influencing pore-water (234U/238U) is alpha recoil. In Holocene sediments, the increase of pore-water (234U/238U) due to recoil provides an estimate of the horizontal flow rate of 11 cm/year, but with considerable uncertainty. At depths in the sediment where conditions are reducing, features in the U concentration and (234U/238U) profiles are offset from one another which constrains the effective diffusivity for U in these sediments to be c. 1-2 * 10**-8 cm**2/s. At depths between the Holocene and these reducing sediments, pore-water (234U/238U) values are unusually low due to a recent increase in the dissolution rate of grain surfaces. This suggests a strengthening of fluid flow, probably due to the flooding of the banks at the last deglaciation and the re-initiation of thermally-driven venting of fluid on the bank top and accompanying recharge on the slopes. Interpretation of existing chlorinity data, in the light of this change in flow rate, constrain the recent horizontal flow rate to be 10.6 ( 3.4) cm/year. Estimates of flow rate from (234U/238U) and Cl[-] are therefore in agreement and suggest flow rates close to those predicted by thermally-driven models of fluid flow. This agreement supports the idea that flow within the Bahamas Banks is mostly thermally driven and suggests that flow rates on the order of 10 cm/year are typical for carbonate platforms where such flow occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.