Uranium concentrations and isotope ratios Bahamas seawater and ODP holes pore-water


Autoria(s): Henderson, Gideon M; Slowey, Niall C; Haddad, Geoffrey A
Cobertura

MEDIAN LATITUDE: 23.987300 * MEDIAN LONGITUDE: -78.123000 * SOUTH-BOUND LATITUDE: 23.614000 * WEST-BOUND LONGITUDE: -79.235700 * NORTH-BOUND LATITUDE: 24.562900 * EAST-BOUND LONGITUDE: -76.083300 * DATE/TIME START: 1996-03-12T15:02:00 * DATE/TIME END: 1996-04-10T10:10:00

Data(s)

15/01/1999

Resumo

The geometry, timing, and rate of fluid-flow through carbonate margins and platforms is not well constrained. In this study, we use U concentrations and isotope ratios measured on small volumes of pore-water from Bahamas slope sediment, coupled with existing chlorinity data, to place constraints on the fluid-flow in this region and, by implication, other carbonate platforms. These data also allow an assessment of the behaviour of U isotopes in an unusually well constrained water-rock system. We report pore-water U concentrations which are controlled by dissolution of high-U organic material at shallow depths in the sediment and by reduction of U to its insoluble 4+ state at greater depths. The dominant process influencing pore-water (234U/238U) is alpha recoil. In Holocene sediments, the increase of pore-water (234U/238U) due to recoil provides an estimate of the horizontal flow rate of 11 cm/year, but with considerable uncertainty. At depths in the sediment where conditions are reducing, features in the U concentration and (234U/238U) profiles are offset from one another which constrains the effective diffusivity for U in these sediments to be c. 1-2 * 10**-8 cm**2/s. At depths between the Holocene and these reducing sediments, pore-water (234U/238U) values are unusually low due to a recent increase in the dissolution rate of grain surfaces. This suggests a strengthening of fluid flow, probably due to the flooding of the banks at the last deglaciation and the re-initiation of thermally-driven venting of fluid on the bank top and accompanying recharge on the slopes. Interpretation of existing chlorinity data, in the light of this change in flow rate, constrain the recent horizontal flow rate to be 10.6 ( 3.4) cm/year. Estimates of flow rate from (234U/238U) and Cl[-] are therefore in agreement and suggest flow rates close to those predicted by thermally-driven models of fluid flow. This agreement supports the idea that flow within the Bahamas Banks is mostly thermally driven and suggests that flow rates on the order of 10 cm/year are typical for carbonate platforms where such flow occurs.

Formato

application/zip, 3 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.711398

doi:10.1594/PANGAEA.711398

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Henderson, Gideon M; Slowey, Niall C; Haddad, Geoffrey A (1999): Fluid flow through carbonate platforms: constraints from 234U/238U and Cl[-] in Bahamas pore-waters. Earth and Planetary Science Letters, 169(1-2), 99-111, doi:10.1016/S0012-821X(99)00065-5

Palavras-Chave #166-1005A; 166-1009A; 234U/238U; 234U/238U std dev; 238U; 238U std dev; 2 sigma; Depth; DEPTH, sediment/rock; DEPTH, water; Depth water; DRILL; Drilling/drill rig; Joides Resolution; Latitude; LATITUDE; Leg166; Longitude; LONGITUDE; Mass spectrometer VG Sector 54; North Atlantic Ocean; Ocean Drilling Program; ODP; Sample mass; Samp m; Uranium 234/Uranium 238 activity ratio; Uranium 234/Uranium 238 activity ratio, standard deviation; Uranium 238; Uranium 238, standard deviation
Tipo

Dataset