967 resultados para Dynamic environments
Resumo:
FEMS Microbiology Ecology, Vol. 57, nº 1
Resumo:
Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e telecomunicações
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
15th IEEE International Conference on Electronics, Circuits and Systems, Malta
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
Dynamic and distributed environments are hard to model since they suffer from unexpected changes, incomplete knowledge, and conflicting perspectives and, thus, call for appropriate knowledge representation and reasoning (KRR) systems. Such KRR systems must handle sets of dynamic beliefs, be sensitive to communicated and perceived changes in the environment and, consequently, may have to drop current beliefs in face of new findings or disregard any new data that conflicts with stronger convictions held by the system. Not only do they need to represent and reason with beliefs, but also they must perform belief revision to maintain the overall consistency of the knowledge base. One way of developing such systems is to use reason maintenance systems (RMS). In this paper we provide an overview of the most representative types of RMS, which are also known as truth maintenance systems (TMS), which are computational instances of the foundations-based theory of belief revision. An RMS module works together with a problem solver. The latter feeds the RMS with assumptions (core beliefs) and conclusions (derived beliefs), which are accompanied by their respective foundations. The role of the RMS module is to store the beliefs, associate with each belief (core or derived belief) the corresponding set of supporting foundations and maintain the consistency of the overall reasoning by keeping, for each represented belief, the current supporting justifications. Two major approaches are used to reason maintenance: single-and multiple-context reasoning systems. Although in the single-context systems, each belief is associated to the beliefs that directly generated it—the justification-based TMS (JTMS) or the logic-based TMS (LTMS), in the multiple context counterparts, each belief is associated with the minimal set of assumptions from which it can be inferred—the assumption-based TMS (ATMS) or the multiple belief reasoner (MBR).
Resumo:
In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.
Resumo:
The aim of this study is to evaluate lighting conditions and speleologists’ visual performance using optical filters when exposed to the lighting conditions of cave environments. A crosssectional study was conducted. Twenty-three speleologists were submitted to an evaluation of visual function in a clinical lab. An examination of visual acuity, contrast sensitivity, stereoacuity and flashlight illuminance levels was also performed in 16 of the 23 speleologists at two caves deprived of natural lightning. Two organic filters (450 nm and 550 nm) were used to compare visual function with and without filters. The mean age of the speleologists was 40.65 (± 10.93) years. We detected 26.1% participants with visual impairment of which refractive error (17.4%) was the major cause. In the cave environment the majority of the speleologists used a head flashlight with a mean illuminance of 451.0 ± 305.7 lux. Binocular visual acuity (BVA) was -0.05 ± 0.15 LogMAR (20/18). BVA for distance without filter was not statistically different from BVA with 550 nm or 450 nm filters (p = 0.093). Significant improved contrast sensitivity was observed with 450 nm filters for 6 cpd (p = 0.034) and 18 cpd (p = 0.026) spatial frequencies. There were no signs and symptoms of visual pathologies related to cave exposure. Illuminance levels were adequate to the majority of the activities performed. The enhancement in contrast sensitivity with filters could potentially improve tasks related with the activities performed in the cave.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The section at Cristo Rei shows sandy beds with intercalated clayey lenses (IVb division from the Lisbon Miocene series) that correspond to a major regression event dated from between ca. 17.6 and 17 Ma. They also correspond to a distal position (relatively to the typical fluviatile facies in Lisbon), nearer the basin's axis. Geologic data and paleontological analysis (plant fossils, fishes, crocodilians, land mammals) allow the reconstruction of environments that were represented in the concerned area: estuary with channels and ox-bows; upstream, areas occupied by brackish waters where Gryphaea griphoides banks developped; still farther upstream, freshwaters sided by humid forests and low mountain subtropical forests under warm temperate and rainy conditions, as well as not far away, seasonally dry environments (low density tree or shrub cover, or steppe).