850 resultados para Detailed mapping
Resumo:
The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.
Resumo:
Devolatilization reactions and subsequent transfer of fluid from subducted oceanic crust into the overlying mantle wedge are important processes, which are responsible for the specific geochemical characteristics of subduction-related metamorphic rocks, as well as those of arc magmatism. To better understand the geochemical fingerprint induced by fluid mobilization during dehydration and rehydration processes related to subduction zone metamorphism, the trace element and rare earth element (REE) distribution patterns in HP-LT metamorphic assemblages in eclogite-, blueschist- and greenschist-facies rocks of the Ile de Groix were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. This study focuses on 10 massive basic rocks representing former hydrothermally altered mid-ocean ridge basalts (MORB), four banded basic rocks of volcano-sedimentary origin and one micaschist. The main hosts for incompatible trace elements are epidote (REE, Th, U, Pb, Sr), garnet [Y, heavy REE (HREE)], phengite (Cs, Rb, Ba, B), titanite [Ti, Nb, Ta, REE; HREE > LREE (light REE)], rutile (Ti, Nb, Ta) and apatite (REE, Sr). The trace element contents of omphacite, amphibole, albite and chlorite are low. The incompatible trace element contents of minerals are controlled by the stable metamorphic mineral assemblage and directly related to the appearance, disappearance and reappearance of minerals, especially epidote, garnet, titanite, rutile and phengite, during subduction zone metamorphism. Epidote is a key mineral in the trace element exchange process because of its large stability field, ranging from lower greenschist- to blueschist- and eclogite-facies conditions. Different generations of epidote are generally observed and related to the coexisting phases at different stages of the metamorphic cycle (e.g. lawsonite, garnet, titanite). Epidote thus controls most of the REE budget during the changing P-T conditions along the prograde and retrograde path. Phengite also plays an important role in determining the large ion lithophile element (LILE) budget, as it is stable to high P-T conditions. The breakdown of phengite causes the release of LILE during retrogression. A comparison of trace element abundances in whole-rocks and minerals shows that the HP-LT metamorphic rocks largely retain the geochemical characteristics of their basic, volcano-sedimentary and pelitic protoliths, including a hydrothermal alteration overprint before the subduction process. A large part of the incompatible trace elements remained trapped in the rocks and was recycled within the various metamorphic assemblages stable under changing metamorphic conditions during the subduction process, indicating that devolatilization reactions in massive basic rocks do not necessarily imply significant simultaneous trace element and REE release.
Resumo:
Centrifuge is a user-friendly system to simultaneously access Arabidopsis gene annotations and intra- and inter-organism sequence comparison data. The tool allows rapid retrieval of user-selected data for each annotated Arabidopsis gene providing, in any combination, data on the following features: predicted protein properties such as mass, pI, cellular location and transmembrane domains; SWISS-PROT annotations; Interpro domains; Gene Ontology records; verified transcription; BLAST matches to the proteomes of A.thaliana, Oryza sativa (rice), Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. The tool lends itself particularly well to the rapid analysis of contigs or of tens or hundreds of genes identified by high-throughput gene expression experiments. In these cases, a summary table of principal predicted protein features for all genes is given followed by more detailed reports for each individual gene. Centrifuge can also be used for single gene analysis or in a word search mode. AVAILABILITY: http://centrifuge.unil.ch/ CONTACT: edward.farmer@unil.ch.
Resumo:
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Resumo:
MR structural T1-weighted imaging using high field systems (>3T) is severely hampered by the existing large transmit field inhomogeneities. New sequences have been developed to better cope with such nuisances. In this work we show the potential of a recently proposed sequence, the MP2RAGE, to obtain improved grey white matter contrast with respect to conventional T1-w protocols, allowing for a better visualization of thalamic nuclei and different white matter bundles in the brain stem. Furthermore, the possibility to obtain high spatial resolution (0.65 mm isotropic) R1 maps fully independent of the transmit field inhomogeneities in clinical acceptable time is demonstrated. In this high resolution R1 maps it was possible to clearly observe varying properties of cortical grey matter throughout the cortex and observe different hippocampus fields with variations of intensity that correlate with known myelin concentration variations.
Resumo:
Debris flows and related landslide processes occur in many regions all over Norway and pose a significant hazard to inhabited areas. Within the framework of the development of a national debris flows susceptibility map, we are working on a modeling approach suitable for Norway with a nationwide coverage. The discrimination of source areas is based on an index approach, which includes topographic parameters and hydrological settings. For the runout modeling, we use the Flow-R model (IGAR, University of Lausanne), which is based on combined probabilistic and energetic algorithms for the assessment of the spreading of the flow and maximum runout distances. First results for different test areas have shown that runout distances can be modeled reliably. For the selection of source areas, however, additional factors have to be considered, such as the lithological and quaternary geological setting, in order to accommodate the strong variation in debris flow activity in the different geological, geomorphological and climate regions of Norway.
Resumo:
PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
This work deals with the elaboration of flood hazard maps. These maps reflect the areas prone to floods based on the effects of Hurricane Mitch in the Municipality of Jucuarán of El Salvador. Stream channels located in the coastal range in the SE of El Salvador flow into the Pacific Ocean and generate alluvial fans. Communities often inhabit these fans can be affected by floods. The geomorphology of these stream basins is associated with small areas, steep slopes, well developed regolite and extensive deforestation. These features play a key role in the generation of flash-floods. This zone lacks comprehensive rainfall data and gauging stations. The most detailed topographic maps are on a scale of 1:25 000. Given that the scale was not sufficiently detailed, we used aerial photographs enlarged to the scale of 1:8000. The effects of Hurricane Mitch mapped on these photographs were regarded as the reference event. Flood maps have a dual purpose (1) community emergency plans, (2) regional land use planning carried out by local authorities. The geomorphological method is based on mapping the geomorphological evidence (alluvial fans, preferential stream channels, erosion and sedimentation, man-made terraces). Following the interpretation of the photographs this information was validated on the field and complemented by eyewitness reports such as the height of water and flow typology. In addition, community workshops were organized to obtain information about the evolution and the impact of the phenomena. The superimposition of this information enables us to obtain a comprehensive geomorphological map. Another aim of the study was the calculation of the peak discharge using the Manning and the paleohydraulic methods and estimates based on geomorphologic criterion. The results were compared with those obtained using the rational method. Significant differences in the order of magnitude of the calculated discharges were noted. The rational method underestimated the results owing to short and discontinuous periods of rainfall data with the result that probabilistic equations cannot be applied. The Manning method yields a wide range of results because of its dependence on the roughness coefficient. The paleohydraulic method yielded higher values than the rational and Manning methods. However, it should be pointed out that it is possible that bigger boulders could have been moved had they existed. These discharge values are lower than those obtained by the geomorphological estimates, i.e. much closer to reality. The flood hazard maps were derived from the comprehensive geomorphological map. Three categories of hazard were established (very high, high and moderate) using flood energy, water height and velocity flow deduced from geomorphological and eyewitness reports.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Resumo:
Captan and folpet are two fungicides largely used in agriculture, but biomonitoring data are mostly limited to measurements of captan metabolite concentrations in spot urine samples of workers, which complicate interpretation of results in terms of internal dose estimation, daily variations according to tasks performed, and most plausible routes of exposure. This study aimed at performing repeated biological measurements of exposure to captan and folpet in field workers (i) to better assess internal dose along with main routes-of-entry according to tasks and (ii) to establish most appropriate sampling and analysis strategies. The detailed urinary excretion time courses of specific and non-specific biomarkers of exposure to captan and folpet were established in tree farmers (n = 2) and grape growers (n = 3) over a typical workweek (seven consecutive days), including spraying and harvest activities. The impact of the expression of urinary measurements [excretion rate values adjusted or not for creatinine or cumulative amounts over given time periods (8, 12, and 24 h)] was evaluated. Absorbed doses and main routes-of-entry were then estimated from the 24-h cumulative urinary amounts through the use of a kinetic model. The time courses showed that exposure levels were higher during spraying than harvest activities. Model simulations also suggest a limited absorption in the studied workers and an exposure mostly through the dermal route. It further pointed out the advantage of expressing biomarker values in terms of body weight-adjusted amounts in repeated 24-h urine collections as compared to concentrations or excretion rates in spot samples, without the necessity for creatinine corrections.