901 resultados para Data dissemination and sharing
Resumo:
The European Multidisciplinary Seafloor and water-column Observatory (EMSO) European Research Infrastructure Consortium (ERIC) provides power, communications, sensors, and data infrastructure for continuous, high-resolution, (near-)real-time, interactive ocean observations across a multidisciplinary and interdisciplinary range of research areas including biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical environments, through the water column down to the abyss. Eleven deep-sea and four shallow nodes span from the Arctic through the Atlantic and Mediterranean, to the Black Sea. Coordination among the consortium nodes is being strengthened through the EMSOdev project (H2020), which will produce the EMSO Generic Instrument Module (EGIM). Early installations are now being upgraded, for example, at the Ligurian, Ionian, Azores, and Porcupine Abyssal Plain (PAP) nodes. Significant findings have been flowing in over the years; for example, high-frequency surface and subsurface water-column measurements of the PAP node show an increase in seawater pCO2 (from 339 μatm in 2003 to 353 μatm in 2011) with little variability in the mean air-sea CO2 flux. In the Central Eastern Atlantic, the Oceanic Platform of the Canary Islands open-ocean canary node (aka ESTOC station) has a long-standing time series on water column physical, biogeochemical, and acidification processes that have contributed to the assessment efforts of the Intergovernmental Panel on Climate Change (IPCC). EMSO not only brings together countries and disciplines but also allows the pooling of resources and coordination to assemble harmonized data into a comprehensive regional ocean picture, which will then be made available to researchers and stakeholders worldwide on an open and interoperable access basis.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
Every Argo data file submitted by a DAC for distribution on the GDAC has its format and data consistency checked by the Argo FileChecker. Two types of checks are applied: 1. Format checks. Ensures the file formats match the Argo standards precisely. 2. Data consistency checks. Additional data consistency checks are performed on a file after it passes the format checks. These checks do not duplicate any of the quality control checks performed elsewhere. These checks can be thought of as “sanity checks” to ensure that the data are consistent with each other. The data consistency checks enforce data standards and ensure that certain data values are reasonable and/or consistent with other information in the files. Examples of the “data standard” checks are the “mandatory parameters” defined for meta-data files and the technical parameter names in technical data files. Files with format or consistency errors are rejected by the GDAC and are not distributed. Less serious problems will generate warnings and the file will still be distributed on the GDAC. Reference Tables and Data Standards: Many of the consistency checks involve comparing the data to the published reference tables and data standards. These tables are documented in the User’s Manual. (The FileChecker implements “text versions” of these tables.)
Resumo:
Doutoramento em Economia
Resumo:
Mestrado em Marketing
Resumo:
Healthcare systems have assimilated information and communication technologies in order to improve the quality of healthcare and patient's experience at reduced costs. The increasing digitalization of people's health information raises however new threats regarding information security and privacy. Accidental or deliberate data breaches of health data may lead to societal pressures, embarrassment and discrimination. Information security and privacy are paramount to achieve high quality healthcare services, and further, to not harm individuals when providing care. With that in mind, we give special attention to the category of Mobile Health (mHealth) systems. That is, the use of mobile devices (e.g., mobile phones, sensors, PDAs) to support medical and public health. Such systems, have been particularly successful in developing countries, taking advantage of the flourishing mobile market and the need to expand the coverage of primary healthcare programs. Many mHealth initiatives, however, fail to address security and privacy issues. This, coupled with the lack of specific legislation for privacy and data protection in these countries, increases the risk of harm to individuals. The overall objective of this thesis is to enhance knowledge regarding the design of security and privacy technologies for mHealth systems. In particular, we deal with mHealth Data Collection Systems (MDCSs), which consists of mobile devices for collecting and reporting health-related data, replacing paper-based approaches for health surveys and surveillance. This thesis consists of publications contributing to mHealth security and privacy in various ways: with a comprehensive literature review about mHealth in Brazil; with the design of a security framework for MDCSs (SecourHealth); with the design of a MDCS (GeoHealth); with the design of Privacy Impact Assessment template for MDCSs; and with the study of ontology-based obfuscation and anonymisation functions for health data.
Resumo:
Scientific research is increasingly data-intensive, relying more and more upon advanced computational resources to be able to answer the questions most pressing to our society at large. This report presents findings from a brief descriptive survey sent to a sample of 342 leading researchers at the University of Washington (UW), Seattle, Washington in 2010 and 2011 as the first stage of the larger National Science Foundation project “Interacting with Cyberinfrastructure in the Face of Changing Science.” This survey assesses these researcher’s use of advanced computational resources, data, and software in their research. We present high-level findings that describe UW researchers’: demographics, interdisciplinarity, research groups, data use, software and computational use—including software development and use, data storage and transfer activities, and collaboration tools, and computing resources. These findings offer insights into the state of computational resources in use during this time period as well as offering a look at the data intensiveness of UW researchers.
Resumo:
The International Seabed Authority (ISA) regulates the activities related with the exploration and exploitation of seabed mineral resources in the Area, which are considered as the "common heritage of mankind" under the United Nations Convention on the Law of the Sea.The ISA has also the mandate to ensure the protection of the marine environment.The development of good practices for the annual reporting and data submission by Contractors is crucial for the ISA to comply with the sustainable development of the mineral marine resources. In 2015,the ISA issued a new template for reporting on exploration activities, which includes the definition of the format for all geophysical, geological and environmental data to be collected and analysed during exploration. The availability of reliable data contributes to improve the assessment of the ISA on the activities in the Area while promoting transparency, which is considered as a major principle of industry bestpractices.
Resumo:
In digital markets personal information is pervasively collected by firms. In the first chapter I study data ownership and product customization when there is exclusive access to non rival but excludable data about consumer preferences. I show that an incumbent firm does not have an incentive to sell an exclusively held dataset with a rival firm, but instead it has an incentive to trade a customizing technology with the other firm. In the second chapter I investigate the effects of consumer information on the intensity of competition. In a two dimensional model of product differentiation, firms use information on preferences to practice price discrimination. I contrast a full privacy and a no privacy benchmark with a regime in which firms are able to target consumers only partially. When data is partially informative, firms are always better-off with price discrimination and an exclusive access to user data is not necessarily a competition policy concern. From a consumer protection perspective, the policy recommendation is that the regulator should promote either no privacy or full privacy. In the third chapter I introduce a data broker that observes either only one or both dimensions of consumer information and sells this data to competing firms for price discrimination purposes. When the seller exogenously holds a partially informative dataset, an exclusive allocation arises. Instead, when the dataset held is fully informative, the data broker trades information non exclusively but each competitor acquires consumer data on a different dimension. When data collection is made endogenous, non exclusivity is robust if collection costs are not too high. The competition policy suggestion is that exclusivity should not be banned per se, but it is data differentiation in equilibrium that rises market power in competitive markets. Upstream competition is sufficient to ensure that both firms get access to consumer information.
Resumo:
The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.
Resumo:
Following the approval of the 2030 Agenda for Sustainable Development in 2015, sustainability became a hotly debated topic. In order to build a better and more sustainable future by 2030, this agenda addressed several global issues, including inequality, climate change, peace, and justice, in the form of 17 Sustainable Development Goals (SDGs), that should be understood and pursued by nations, corporations, institutions, and individuals. In this thesis, we researched how to exploit and integrate Human-Computer Interaction (HCI) and Data Visualization to promote knowledge and awareness about SDG 8, which wants to encourage lasting, inclusive, and sustainable economic growth, full and productive employment, and decent work for all. In particular, we focused on three targets: green economy, sustainable tourism, employment, decent work for all, and social protection. The primary goal of this research is to determine whether HCI approaches may be used to create and validate interactive data visualization that can serve as helpful decision-making aids for specific groups and raise their knowledge of public-interest issues. To accomplish this goal, we analyzed four case studies. In the first two, we wanted to promote knowledge and awareness about green economy issues: we investigated the Human-Building Interaction inside a Smart Campus and the dematerialization process inside a University. In the third, we focused on smart tourism, investigating the relationship between locals and tourists to create meaningful connections and promote more sustainable tourism. In the fourth, we explored the industry context to highlight sustainability policies inside well-known companies. This research focuses on the hypothesis that interactive data visualization tools can make communities aware of sustainability aspects related to SDG8 and its targets. The research questions addressed are two: "how to promote awareness about SDG8 and its targets through interactive data visualizations?" and "to what extent are these interactive data visualizations effective?".
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
The dissertation explores the intersections between the temporalities of migration management and border-crossers’ temporalities. First, I analyze the relation between acceleration and (non)knowledge production by focusing on the “accelerated procedures” for asylum. These procedures are applied to people whose asylum applications are deemed as suspicious and likely to be rejected. I argue that the shortened timeframes shaping these procedures are a tool for hindering asylum seekers’ possibilities to collect and produce evidence supporting their cases, eventually facilitating and speeding up their removal for Member States’ territory. Second, I analyze the encounters between migration management and border-crossers during the identification practices carried out the Hotspots and during the asylum process in terms of “temporal collisions”. I develop the notion of “hijacked knowledge” to illustrate how these “temporal collisions” negatively affect border-crossers’ possibilities of action, by producing a significant lack of knowledge and awareness about the procedures to which they are subjected and their temporal implications. With the concept of “reactive calibration”, on the other hand, I suggest that once migrants become aware of the temporalities of control, they try to appropriate them by aligning their bodies, narrations and identities to those temporalities. The third part of the dissertation describes the situated intervention developed as part of my ethnographic activity. Drawing on participatory design, design justice and STS making and doing, I designed a role-playing game - My documents, check them out - seeking to involve border-crossers in the re-design of the categories usually deployed in migration management.
Resumo:
English has become the lingua franca for scientific divulgation and definitely has an impact on EFL speakers. They have to develop competences in a foreign language to publish their scientific articles and to become part of a community. Years of study, effort, and many challenges are daily present in the life of the students of the sciences. However, despite a certain skepticism, the impact English has on EFL speakers with a Ph.D. is positive: they are highly competent in a foreign language which allows them to establish better relationships around the globe and improve the world of science through collaborations and the publication of scientific articles.
Resumo:
The increasing number of Resident Space Objects (RSOs) is a threat to spaceflight operations. Conjunction Data Messages (CDMs) are sent to satellite operators to warn for possible future collision and their probabilities. The research project described herein pushed forward an algorithm that is able to update the collision probability directly on-board starting from CDMs and the state vector of the hosting satellite which is constantly updated thanks to an onboard GNSS receiver. A large set of methods for computing the collision probability was analyzed in order to find the best ones for this application. The selected algorithm was then tested to assess and improve its performance. Finally, parts of the algorithm and external software were implemented on a Raspberry Pi 3B+ board to demonstrate the compatibility of this approach with computational resources similar to those typically available onboard modern spacecraft.