987 resultados para Critical forces
Resumo:
A multimodal trip planner that produces optimal journeys involving both public transport and private vehicle legs has to solve a number of shortest path problems, both on the road network and the public transport network. The algorithms that are used to solve these shortest path problems have been researched since the late 1950s. However, in order to provide accurate journey plans that can be trusted by the user, the variability of travel times caused by traffic congestion must be taken into consideration. This requires the use of more sophisticated time-dependent shortest path algorithms, which have only been researched in depth over the last two decades, from the mid-1990s. This paper will review and compare nine algorithms that have been proposed in the literature, discussing the advantages and disadvantages of each algorithm on the basis of five important criteria that must be considered when choosing one or more of them to implement in a multimodal trip planner.
Resumo:
In this chapter we will make the transition towards the design of business models and the related critical issues. We develop a model that helps us understand the causalities that play a role in understanding the viability and feasibility of the business models, i.e. long-term profitability and market adoption. We argue that designing viable business models requires balancing the requirements and interests of the actors involved, within and between the various business model domains. Requirements in the service domain guide the design choices in the technology domain, which in turn affect network formation and the financial arrangements. It is important to understand the Critical Design Issues (CDIs) involved in business models and their interdependencies. In this chapter, we present the Critical Design Issues involved in designing mobile service business models, and demonstrate how they are linked to the Critical Success Factors (CSFs) with regard to business model viability. This results in a causal model for understanding business model viability, as well as providing grounding for the business model design approach outlined in Chapter 5.
Resumo:
Recent literature on Enterprise System (ES) implementation projects highlights the importance of Knowledge Integration (KI) for implementation success. The fundamental characteristics of ES - integration of modules, business process view, and aspects of information transparency - necessitate that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. In this chapter, the authors study the KI impact on ES success that is relevant to the ES post-implementation in support of organizations' returns on their ES investments. They adopt the ES post-implementation segment of ES utilization to explore whether the KI approach is causally linked to ES success. The research model was tested in a multi-industry sample in Malaysia from which data was gathered from managerial and operational employees spread across six large organizations. Consistent with the explanation by knowledge-based theory, the results show that KI was valid and significantly related to the outcome of ES that relates to an organization's performance, which the authors refer to as ES success. The KI positive impact on the success of ES drives one to highlight the importance of ontological KI in the complexity of the ES environment. The authors believe that focusing on an ontology through the KI perspective can make significant contributions to current ES problems.
Resumo:
Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.
Resumo:
Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.
Resumo:
The charge of an isolated dust grain and ion drag forces on the grain in a collisionless, high-voltage, capacitive rf sheath are studied theoretically. The studies are carried out assuming that the positive ions are monoenergetic, as well as in more realistic approximation, assuming that the time-averaged energy distribution of ions impinging on the dust grain has a double-peaked hollow profile. For the nonmonoenergetic case, an analytical expression for the ion flux to the dust grain is obtained. It is studied how the dust charge and ion drag forces depend on the rf frequency, electron density at plasma-sheath boundary, electron temperature and ratio of the effective oscillation amplitude of rf current to the electron Debye length. It is shown that the dust charge and ion drag forces obtained in the monoenergetic ion approximation may differ from those calculated assuming that the ions are nonmonoenergetic. The difference increases with increasing the width of the ion energy spread in the ion distribution. © 2009 American Institute of Physics.
Resumo:
We demonstrate the first biaxial fiber Bragg grating (FBG) accelerometer using axial and transverse forces. An inertial object is fixed at the middle of two FBGs inscribed in one fiber. The difference between the resonant wavelengths of the two FBGs can distinguish the acceleration in the axial direction, while being insensitive in the transverse direction. The average of the resonant wavelengths of the two FBGs can distinguish the acceleration in the transverse direction, while being insensitive in the axial direction. In the experiments, when the transverse direction was vertical, the crest-to-trough sensitivity at 5 Hz and resonant frequency of the average were 0.545 nm/g and 34.42 Hz, respectively. When the axial direction was vertical, those of the difference were 0.0454 nm/g and 900 Hz, respectively. For each FBG, the crest-to-trough sensitivity at 5 Hz and resonant frequency in the transverse/vertical direction were 24 and 1/26 times those in the axial/vertical direction, respectively.
Resumo:
• For the purposes of this chapter, “health law” encapsulates regulation of the medical and health professions, the administration of health services and the maintenance of public health to the extent that it is connected to the provision of health services. • There are diverging views as to whether health law can be regarded as a discrete “area of law”. • Health law draws on other areas of law such as tort law, criminal law and family law. It also draws upon other disciplines, most notably medical and health ethics. • Social and economic forces have influenced the development and direction of health law, and these forces may become even more influential in the future. • The increasingly globalised world has implications for Australia's health systems and raises questions and creates commitments in respect of the international community. • Technological developments, including in respect of treatment, diagnosis and information management, create ongoing challenges for health law. • Patient rights, human rights and consumerism are increasingly key drivers in the development of health law. • Health law is significant to contemporary Australian society because of the gravity of the topics that fall within its ambit, its social relevance to so many aspects of human existence and endeavour, the important role it plays in protecting the vulnerable, and the extent to which it engages with fundamental principles of justice.
Resumo:
Early childhood research has long established that drawing is a central, and important activity for young children. Less common are investigations into the drawing activity of adults involved in early childhood. A team of adult early childhood researchers, with differing exposures and familiarities with drawing, experimented with intergenerational collaborative drawing with colleagues, students, family members and others, to explore the effectiveness of drawing as a research process and as an arts-based methodology. This testing prompted critical thinking into how drawing might facilitate research that involves young children, to operate in more communicable ways, and how research-focused drawings might occur in reference to a research project.
Resumo:
This book attempts to persuade a new generation of scholars, criminologists, activists, and policy makers sympathetic to the quest for global justice to open the envelope, to step out of their comfort zones and typical frames of analysis to gaze at a world full of injustice against the female sex, much of it systemic, linked to culture, custom and religion. In some instances the sources of these injustices intersect with those that produce global inequality, imperialism and racism. This book also investigates circumstances where the globalising forces cultivate male on male violence in the anomic spaces of supercapitalism – the border zones of Mexico and the United States, and the frontier mining communities in the Australian desert. However systemic gendered injustices, such as forced marriage of child female brides, sati the cremation of widows, genital cutting, honour crimes, rape and domestic violence against women, are forms of violence only experienced by the female sex. The book does not shirk away from female violence either. Carrington argues that if feminism wants to have a voice in the public, cultural, political and criminological debates about heightened, albeit often exaggerated, social concerns about growing female violence and engagement in terrorism, then new directions in theorising female violence are required. Feminist silences about the violent crimes, atrocities and acts of terrorism committed by the female sex leave anti-feminist explanations uncontested. This allows a discursive space for feminist backlash ideologues to flourish. This book contests those ideologies to offer counter explanations for the rise in female violence and female terrorism, in a global context where systemic gendered violence against women is alarming and entrenched. The world needs feminism to take hold across the globe, now more than ever.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Given the global escalation of gaps between rich and poor, contemporary work in critical literacy needs to overtly question the politics of poverty. How and where is poverty produced, by what means, by whom and for whom and how are educational systems stratified to provide different kinds of education to the rich and the poor? Yet rather than critical literacy, international educational reform movements stress performative standards on basic literacy. In this context literacy researchers need to ask policy-makers hard questions about taken-for-granted rhetoric that surrounds poverty, literacy and education. At school, regional and state levels, educational leaders need to argue for fair resourcing and decision-making for their communities and students. In classrooms teachers need to weave critical questioning and inclusive learning interactions into the fabric of everyday life.
Resumo:
Impact forces develop at the wheel/rail interface due to the presence of defects in the running surface of the wheel and/ or the railhead. This paper reports on wheel impacts, caused by permanently dipped rail joints, that are characterised by high-frequency impact forces generated by high amplifications of the static load that occur for a very short duration (P1 forces), followed by relatively low frequency, lower amplitude forces (P2 forces) that occur for a longer duration. These impact forces are affected by the design of components adjacent to the wheel and rail, namely the bogie’s primary suspension and rail seat pads; the influences of stiffness and damping characteristics of these components are investigated. A modified three-dimensional simulation model of the dynamics of the wagon/track system that includes defects in the track is created and is used to obtain the time series of the impact force. This is converted into impact force factors that are compared with a set of field-measured data reported in the literature. A simplified equation for the determination of impact force factors due to dipped rail joints is also proposed and validated.
Resumo:
Overview • AC HPE and critical thinking • Interrelated propositions: Examples • Inquiry approach and questions • Summary and our challenge
Resumo:
Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.