942 resultados para Contabilidade nominal
Resumo:
This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.
Resumo:
This paper proposes a control method that can balance the input currents of the three-phase three-wire boost rectifier under unbalanced input voltage condition. The control objective is to operate the rectifier in the high-power-factor mode under balanced input voltage condition but to give overriding priority to the current balance function in case of unbalance in the input voltage. The control structure has been divided into two major functional blocks. The inner loop current-mode controller implements resistor emulation to achieve high-power-factor operation on each of the two orthogonal axes of the stationary reference frame. The outer control loop performs magnitude scaling and phase-shifting operations on current of one of the axes to make it balanced with the current on the other axis. The coefficients of scaling and shifting functions are determined by two closed-loop prportional-integral (PI) controllers that impose the conditions of input current balance as PI references. The control algorithm is simple and high performing. It does not require input voltage sensing and transformation of the control variables into a rotating reference frame. The simulation results on a MATLAB-SIMULINK platform validate the proposed control strategy. In implementation Texas Instrument's digital signal processor TMS320F24OF is used as the digital controller. The control algorithm for high-power-factor operation is tested on a prototype boost rectifier under nominal and unbalanced input voltage conditions.
Resumo:
Wear of etched near-eutectic aluminium silicon alloy slid against a steel ball under ambient is explored. The sliding velocity is kept low (0.01 m/s) and the nominal contact pressure is varied in a 15-40 MPa range. Four stages of wear are identified; ultra mild wear, mild wear, severe wear and post severe oxidative wear. The first transition is controlled by the protrusions of silicon particles, projecting out of the aluminium alloy matrix. Once these protrusions disappear under pressure and sliding, oxidation and bulk energy dissipation mechanisms take over to institute transitions to other stages of wear. The phenomenological characteristics of wear stages are explored using a variety of techniques including nanoindentation, focused ion beam milling, electron microscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and optical interferometry. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
We present a measurement of the top-quark width using $t\bar{t}$ events produced in $p\bar{p}$ collisions at Fermilab's Tevatron collider and collected by the CDF II detector. In the mode where the top quark decays to a $W$ boson and a bottom quark, we select events in which one $W$ decays leptonically and the other hadronically~(lepton + jets channel) . From a data sample corresponding to 4.3~fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of $W$ boson that decays hadronically are reconstructed for each event and compared with templates of different top-quark widths~($\Gamma_t$) and deviations from nominal jet energy scale~($\Delta_{JES}$) to perform a simultaneous fit for both parameters, where $\Delta_{JES}$ is used for the {\it in situ} calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95$\%$ confidence level~(CL) of $\Gamma_t $
Resumo:
A quantitative structural investigation was carried out on (1-y)PbZrxTi1-xO3-yPbZn(1/3)Nb(2/3)O(3) where y=0.1 and 0.2 ((1-y)PZT-yPZN). High resolution XRD data have been used for quantitative phase analysis. The nominal compositions were prepared by a two-step low temperature calcining solid-state method. The sintered samples show an average grain size of 1-2 mu m. It is demonstrated that the increase in the concentration of PZN leads to the shift of the morphotropic phase boundary (MPB) of PZT towards the PbZrO3 end member. In the present work, an effort has been made to quantitatively determine the MPB phase contents and to regain the coexistence of tetragonal and monoclinic phases by varying the value of x(i.e. Zr/Ti ratio). The width of the MPB becomes considerably larger for y=0.10 and 0.20 as compared to pure PZT. This is attributed to the considerably lower grain size of our samples resulting from the adopted preparation method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This dissertation is a synchronic description of adnominal person in the highly synthetic morphological system of Erzya as attested in extensive Erzya-language written-text corpora consisting of nearly 140 publications with over 4.5 million words and over 285,000 unique lexical items. Insight for this description have been obtained from several source grammars in German, Russian, Erzya, Finnish, Estonian and Hungarian, as well as bounteous discussions in the understanding of the language with native speakers and grammarians 1993 2010. Introductory information includes the discussion of the status of Erzya as a lan- guage, the enumeration of phonemes generally used in the transliteration of texts and an in-depth description of adnominal morphology. The reader is then made aware of typological and Erzya-specifc work in the study of adnominal-type person. Methods of description draw upon the prerequisite information required in the development of a two-level morphological analyzer, as can be obtained in the typological description of allomorphic variation in the target language. Indication of original author or dialect background is considered important in the attestation of linguistic phenomena, such that variation might be plotted for a synchronic description of the language. The phonological description includes the establishment of a 6-vowel, 29-consonant phoneme system for use in the transliteration of annotated texts, i.e. two phonemes more than are generally recognized, and numerous rules governing allophonic variation in the language. Erzya adnominal morphology is demonstrated to have a three-way split in stem types and a three-layer system of non-derivative affixation. The adnominal-affixation layers are broken into (a) declension (the categories of case, number and deictic marking); (b) nominal conjugation (non-verb grammatical and oblique-case items can be conjugated), and (c) clitic marking. Each layer is given statistical detail with regard to concatenability. Finally, individual subsections are dedicated to the matters of: possessive declension compatibility in the distinction of sublexica; genitive and dative-case paradigmatic defectivity in the possessive declension, where it is demonstrated to be parametrically diverse, and secondary declension, a proposed typology modifiers without nouns , as compatible with adnominal person.
Resumo:
Durability is central to the commercialization of polymer electrolyte fuel cells (PEFCs). The incorporation of TiO2 with platinum (Pt) ameliorates both the stability and catalytic activity of cathodes in relation to pristine Pt cathodes currently being used in PEFCs. PEFC cathodes comprising carbon-supported Pt-TiO2 (Pt-TiO2/C) exhibit higher durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance, and cyclic voltammetry data. The degradation in performance of the Pt-TiO2/C cathodes is 10% after 5000 test cycles as against 28% for Pt/C cathodes. These data are in conformity with the electrochemical surface area and impedance values. Pt-TiO2/C cathodes can withstand even 10,000 test cycles with nominal effect on their performance. X-ray diffraction, transmission electron microscope, and cross-sectional field-emission-scanning electron microscope studies on the catalytic electrodes reflect that incorporating TiO2 with Pt helps in mitigating the aggregation of Pt particles and protects the Nafion membrane against peroxide radicals formed during the cathodic reduction of oxygen. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3421970] All rights reserved.
Resumo:
Optically clear glasses of various compositions in the system (100-x)Li2B4O7 center dot x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the composition of the nano-crystallites to be that of Ba5Li2Ti2Nb8O30. B-11 NMR studies revealed the transformation of BO4 structural units into BO3 units owing to the increase in TiO6 and NbO6 structural units as the composition of Ba5Li2Ti2Nb8O30 increased in the glass. This, in turn, resulted in an increase in the density of the glasses. The influence of the nominal composition of the glasses and glass nanocrystal composites on optical band gap (E-opt), Urbach energy (Delta E), refractive index (n), molar refraction (R-m), optical polarizability (alpha(m)) and third order non-linear optical susceptibility (chi(3)) were studied.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
This paper is concerned with using the bootstrap to obtain improved critical values for the error correction model (ECM) cointegration test in dynamic models. In the paper we investigate the effects of dynamic specification on the size and power of the ECM cointegration test with bootstrap critical values. The results from a Monte Carlo study show that the size of the bootstrap ECM cointegration test is close to the nominal significance level. We find that overspecification of the lag length results in a loss of power. Underspecification of the lag length results in size distortion. The performance of the bootstrap ECM cointegration test deteriorates if the correct lag length is not used in the ECM. The bootstrap ECM cointegration test is therefore not robust to model misspecification.
Resumo:
Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of the correspond- ing asymptotic tests. The e¤ect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymp- totic test. The bootstrap test estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.