791 resultados para Computing clouds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments on rapid neutral-neutral reactions involving the radical CN at low temperature and the neutral C atom at room temperature suggest that atom-neutral and radical-neutral reactions may be generally more rapid at low temperature than hitherto thought. We have included a variety of rapid neutral-neutral reactions in our gas-phase chemical models of quiescent, dense interstellar clouds. We find the calculated abundances of many molecules to be greatly changed from previous values. In particular, the peak 'early-time' abundances of organic molecules are reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed DC3N and HC3N in a number of cold dust clouds in order to derive the degree of deuterium fractionation. We find that the ratio of DC3N to HC3N is large, at about 0.05 or more, and discuss the implications of this result for the synthesis of cyanoacetylene. The observations are most readily interpreted if the deuteration of HC3N is linked to that of cyclic C3H2, which is also observed to exhibit a large degree of deuterium fractionation. HC3N deuteration levels comparable with those we observed are found to he just compatible with the mechanism suggested by Howe & Millar, but with adjusted rate coefficients. Freeze-out on to grain surfaces is also considered, but produces widespread deuterium enhancement in many species. contrary to observed levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate new approaches to the deuteration of C3H2, HC3N and HC5N in dark clouds, following the suggestion that protonated HC3N might form different isomers, a linear structure (HC3NH+) being the most stable. We consider the effect of linear HC3NH+ and HC5NH+ on the formation of HC3N and HC5N, and find that deuteration ratios at approximately 10 K are reduced, in the case of HC3N to values significantly below those observed, such that a deuteration mechanism other than direct deuteron transfer is probably required for cold clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observation by Meyer & Roch of NH in the interstellar clouds towards zeta Per and HD 27778 cannot be explained with conventional gas-phase chemistry models. A simple non-equilibrium model for the zeta Per cloud, which incorporates the grain-surface production of NH and OH or, alternatively, NH3 and H2O, is able to reproduce the abundances of all observed species (except CH+) quite accurately. Moreover, chemical models which include grain-surface reactions can reproduce the observed abundance not only of NH but also of CN, which is efficiently formed at low temperatures, initiated by the reaction of NH with C+. Pure gas-phase models and cloud interface models, in which NH and CH+ are formed in a warm and tenuous environment, fail to explain the observed high abundance of CN. Hence the observation of NH in zeta Per and HD 27778 provides evidence for the presence of grain-surface reactions leading to molecules other than H-2. It is predicted that NH2 and NH3 should have abundances not much below that of NH if NH3 instead of NH is formed on grains. With or without surface reactions, the column densities of H2O and C2H are expected to be about 10(13) cm-2, and these molecules may be detectable in the zeta Per cloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent laboratory data on the ion-neutral chemistry of PAH and fullerene ions and molecules have been incorporated into chemical kinetic models of interstellar clouds. The laboratory data show that the-second ionization potentials of many complex molecules are less than the first ionization potential of helium. Thus collisions between He+, generated by cosmic ray ionization, and PAH and fullerene neutrals produce doubly charged cations. I find that these cations, and also protonated neutrals, are abundant in dark clouds. If the recombination of electrons with doubly charged cations, which releases typically 14 eV of energy, is dissociative in nature, then PAH and fullerene species are destroyed m both diffuse and dense clouds on astronomically significant time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effects of depletion of the elements C, N and O on the chemical composition of dark clouds, using both isothermal and isochoric cloud models. Our work differs from previous approaches in that we have considered a much larger range of CNO depletions. We have included the chemistry of the ortho-and para-forms of H2 and the exothermic reaction between N+ and ortho-H2, which synthesizes NH3. In the isothermal models, the ortho:para ratio is very small at large depletions, but NH3 formation is still efficient owing to reactions between He+ and CN or HCN. In the isochoric models, the equilibrium temperature of the gas is larger, and a thermal ortho:para ratio, which is large enough to drive NH3 formation, results. In all cases, the fractional abundance of NH3 is close to 10(-8) and this may help to explain the puzzling observation that, in dark clouds, the column density of NH3 is always close to 10(15) cm-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of protonated HCN (HCNH+) in a selection of galactic molecular clouds are reported. This species plays a key role in understanding the chemistry of the important high density tracer HCN. HCNH+ has been detected in the nearby cold dust cloud TMC-1 with an ratio relative to HCN of [HCNH+]/[HCN] between 0.015 and 0.26 (preferred value 0.03) and tentatively in DR21(OH) with a ratio of approximately 0.01. This is about 100 times higher than the ratio of protonated carbon monoxide to CO [HCO+]/[CO], but comparable to the [HCS+]/[CS] ratio. Possible explanations of these high abundance ratios are discussed in the light of model calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have used recent laboratory studies on the reactions of the phosphorus hydride ions, PH(n)+ (n = 0-4) to construct a new model of phosphorus chemistry in interstellar clouds. I find that the non-detection of PN in cold, dark clouds in consistent with the chemical models only if the depletion of phosphorus in large, approximately 10(4) in TMC-1. Although the laboratory studies indicate that organo-phosphorus chains C(n)P can be formed, this large depletion precludes the detection of any phosphorus-bearing moleclues in cold clouds. However, in warm clouds associated with star formation, the depletion of phosphorus may be reduced. In this case one can reproduce the PN abundance toward Orion KL with a depletion factor of about 300. Interestingly, if the organo-phosphorus species are not destroyed by O atoms, I predict fractional abundances in Ori KL of between 10(-11) and 10(-10) for C(n)P (n = 2-4) and HCCP.