973 resultados para Climate Warming
Resumo:
Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO(2)] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO(2) enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO(2)-enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C(3) crops are likely to produce more harvestable products and that both C(3) and C(4) crops are likely to use less water with rising atmospheric [CO(2)] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO(2)] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO(2) world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study got its origin in the failed climate negotiations in the Copenhagen 2009 summit. By conducting a public good game, with participants from China and Sweden, my study indicates that previous studies on public good games can predict the outcome of the game to a quit large extent even though most of my statistical tests came out statistically insignificant. My study also indicates that by framing the game as climate negotiations there were no statistical significant difference on the level of contributions in comparison to the unframed versions of the game. The awareness of the issues with emissions, global warming and other environmental problems are pretty high but even so when push comes to shove gains in the short run are prioritized to gains in the long run. There are however hypothetical willingness to come to term with the environmental issues. The results of the study indicate that the outcome of the Copenhagen summit can be avoidable but would need additional experiments made on cultural differences and behavior.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The potential impact of global climate change on the spatial-temporal distribution of phoma leaf spot of coffee in Brazil was evaluated. Maps were prepared with the favorability of the climate to the occurrence of the disease in the current period and future. The future scenarios used were centered for the decades of 2010-2030, 2040-2060, and 2070-2090 (scenarios A2 and B2). These scenarios were obtained from six global climate models (GCM's) provided by the Intergovernmental Panel on Climate Change (IPCC). Assuming the future scenarios outlined by the IPCC, a reduction will occur in the occurrence of climatic favorability of phoma leaf spot in Brazil in both future scenarios (A2 and B2). As with the temporal distribution, the period of greatest risk of phoma leaf spot will tend to diminish in future decades. These planned changes will be larger in the A2 scenario compared to the predicted scenario B2. Despite the decrease in the favorability of phoma leaf spot in the country, some regions still present a potential risk of this disease. Furthermore, the increased frequency of extreme weather was not taken in to account. These will certainly influence the magnitude of potential impacts of climate change on the phoma leaf spot in Brazil.
Resumo:
Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.
Resumo:
Climate change is a continuous process that began centuries ago. Today the pace of change has increased with greater rapidity because of global warming induced by anthropogenically generated greenhouse gases (GHG). Failure to effectively deal with the adverse outcomes can easily disrupt plans for sustainable economic development. Because of the failure of export agriculture over the last several decades, to provide the economic stimuli needed to promote economic growth and development, Jamaica, like many other island states in the Caribbean subregion, has come to rely on tourism as an instrument of transformation of the macro-economy. It is believed this shift in economic imperative would eventually provide the economic impetus needed to generate much needed growth and development. This assessment has shown that tourism is not only a leading earner of foreign exchange in Jamaica and a major creator of both direct and indirect jobs but, also, one of the principal contributors to the country‟s Gross Domestic Product (GDP). The rapid expansion of the industry which occurred over the last several decades coupled with disregard for sound environmental practices has led to the destruction of coral reefs and the silting of wetlands. Because most of the industry is located along the coastal region it is extremely vulnerable to the adverse effects of climate change. Failure to address the predictable environmental challenges of climate change, with some degree of immediacy, will not only undermine, but quickly and seriously impair the capacity of industry to stimulate and contribute to the process of economic development. To this end, it important that further development of industry be characterised by sound economic and social planning and proper environmental practices.
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Waxman-Markey Bill is a comprehensive national climate and energy legislation designed to reduce global warming pollution and transition to a clean energy economy. In order to accomplish the first goal, the bill introduces a cap-and-trade program.
Resumo:
The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere-ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.
Resumo:
This work assessed homogeneity of the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) weather station climate series, using various statistical techniques. The record from this target station is one of the longest in Brazil, having commenced in 1933 with observations of precipitation, and temperatures and other variables later in 1936. Thus, it is one of the few stations in Brazil with enough data for long-term climate variability and climate change studies. There is, however, a possibility that its data may have been contaminated by some artifacts over time. Admittedly, there was an intervention on the observations in 1958, with the replacement of instruments, for which the size of impact has not been yet evaluated. The station transformed in the course of time from rural to urban, and this may also have influenced homogeneity of the observations and makes the station less representative for climate studies over larger spatial scales. Homogeneity of the target station was assessed applying both absolute, or single station tests, and tests relatively to regional climate, in annual scale, regarding daily precipitation, relative humidity, maximum (TMax), minimum (TMin), and wet bulb temperatures. Among these quantities, only precipitation does not exhibit any inhomogeneity. A clear signal of change of instruments in 1958 was detected in the TMax and relative humidity data, the latter certainly because of its strong dependence on temperature. This signal is not very clear in TMin, but it presents non-climatic discontinuities around 1953 and around 1970. A significant homogeneity break is found around 1990 for TMax and wet bulb temperature. The discontinuities detected after 1958 may have been caused by urbanization, as the observed warming trend in the station is considerably greater than that corresponding to regional climate.
Resumo:
Climate change can be associated with variations in the frequency and intensity of extreme temperatures and precipitation events on the local and regional scales. Along coastal areas, flooding associated with increased occupation has seriously impacted products and services generated by marine life, in particular the biotechnological potential that macroalgae hold. Therefore, this paper analyzes the available information on the taxonomy, ecology and physiology of macroalgae and discusses the impacts of climate change and local stress on the biotechnological potential of Brazilian macroalgae. Based on data compiled from a series of floristic and ecological works, we note the disappearance in some Brazilian regions of major groups of biotechnological interest. In some cases, the introduction of exotic species has been documented, as well as expansion of the distribution range of economically important species. We also verify an increase in the similarities between the Brazilian phycogeographic provinces, although they still remain different. It is possible that these changes have resulted from the warming of South Atlantic water, as observed for its surface in southeastern Brazilian, mainly during the winter. However, unplanned urbanization of coastal areas can also produce similar biodiversity losses, which requires efforts to generate long-term temporal data on the composition, community structure and physiology of macroalgae.
Resumo:
[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals
Resumo:
In the past a change in temperature of 5°C most often occurred over intervals of thousands of years. According to estimates by the IPCC, in the XXI century is expected an increase in average temperatures in Europe between 1.8 and 4.0°C in the best case caused by emissions of carbon dioxide and other GHG from human activities. As well as on the environment and economic context, global warming will have effects even on road safety. Several studies have already shown how increasing temperature may cause a worsening of some types of road surface damages, especially rutting, a permanent deformation of the road structures consisting in the formation of a longitudinal depression in the wheelpath, mostly due to the rheological behavior of bitumen. This deformation evolves during the hot season because of the heating capacity of the asphalt layers, in fact, the road surface temperature is up to 24°C higher than air. In this thesis, through the use of Wheeltrack test, it was studied the behavior of some types of asphalt concrete mixtures subjected to fatigue testing at different temperatures. The objectives of this study are: to determine the strain variation of different bituminous mixture subjected to fatigue testing at different temperature conditions; to investigate the effect of aggregates, bitumen and mixtures’ characteristics on rutting. Samples were made in the laboratory mostly using an already prepared mixtures, the others preparing the asphalt concrete from the grading curve and bitumen content. The same procedure was performed for each specimen: preparation, compaction using the roller compactor, cooling and heating before the test. The tests were carried out at 40 - 50 - 60°C in order to obtain the evolution of deformation with temperature variation, except some mixtures for which the tests were carried out only at 50°C. In the elaboration of the results were considered testing parameters, component properties and the characteristics of the mixture. Among the testing parameters, temperature was varied for each sample. The mixtures responded to this variation with a different behavior (linear logarithmic and exponential) not directly correlated with the asphalt characteristics; the others parameters as load, passage frequency and test condition were kept constant. According to the results obtained, the main contribution to deformation is due to the type of binder used, it was found that the modified bitumen have a better response than the same mixtures containing traditional bitumen; to the porosity which affects negatively the behavior of the samples and to the homogeneity ceteris paribus. The granulometric composition did not seem to have interfered with the results. Overall has emerged at working temperature, a decisive importance of bitumen composition, than the other characteristics of the mixture, that tends to disappear with heating in favor of increased dependence of rutting resistance from the granulometric composition of the sample considered. In particular it is essential, rather than the mechanical characteristics of the binder, its chemical properties given by the polymeric modification. To confirm some considered results, the maximum bulk density and the air voids content were determined. Tests have been conducted in the laboratories of the Civil Engineering Department at NTNU in Trondheim according to European Standards.