978 resultados para Blog datasets


Relevância:

10.00% 10.00%

Publicador:

Resumo:

25th Conference of the European Cetacean Society. Long-terms datasets on marine mammals: learning from the past to manage the future, Cadiz, Spain, 21-23 March 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jornadas "Ciência nos Açores - que futuro?", Biblioteca Pública e Arquivo Regional de Ponta Delgada, Largo do Colégio, Ponta Delgada, 7-8 de junho.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The species abundance distribution (SAD) has been a central focus of community ecology for over fifty years, and is currently the subject of widespread renewed interest. The gambin model has recently been proposed as a model that provides a superior fit to commonly preferred SAD models. It has also been argued that the model's single parameter (α) presents a potentially informative ecological diversity metric, because it summarises the shape of the SAD in a single number. Despite this potential, few empirical tests of the model have been undertaken, perhaps because the necessary methods and software for fitting the model have not existed. Here, we derive a maximum likelihood method to fit the model, and use it to undertake a comprehensive comparative analysis of the fit of the gambin model. The functions and computational code to fit the model are incorporated in a newly developed free-to-download R package (gambin). We test the gambin model using a variety of datasets and compare the fit of the gambin model to fits obtained using the Poisson lognormal, logseries and zero-sum multinomial distributions. We found that gambin almost universally provided a better fit to the data and that the fit was consistent for a variety of sample grain sizes. We demonstrate how α can be used to differentiate intelligibly between community structures of Azorean arthropods sampled in different land use types. We conclude that gambin presents a flexible model capable of fitting a wide variety of observed SAD data, while providing a useful index of SAD form in its single fitted parameter. As such, gambin has wide potential applicability in the study of SADs, and ecology more generally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artigo também disponível no PROA-UA: plataforma de revistas em open access da universidade de aveiro com o URI http://revistas.ua.pt/index.php/Carnets/article/view/768/695.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação aborda o problema de detecção e desvio de obstáculos "SAA- Sense And Avoid" em movimento para veículos aéreos. Em particular apresenta contribuições tendo em vista a obtenção de soluções para permitir a utilização de aeronaves não tripuladas em espaço aéreo não segregado e para aplicações civis. Estas contribuições caracterizam-se por: uma análise do problema de SAA em \UAV's - Unmmaned Aerial Vehicles\ civis; a definição do conceito e metodologia para o projecto deste tipo de sistemas; uma proposta de \ben- chmarking\ para o sistema SAA caracterizando um conjunto de "datasets\ adequados para a validação de métodos de detecção; respectiva validação experimental do processo e obtenção de "datasets"; a análise do estado da arte para a detecção de \Dim point features\ ; o projecto de uma arquitectura para uma solução de SAA incorporando a integração de compensação de \ego motion" e respectiva validação para um "dataset" recolhido. Tendo em vista a análise comparativa de diferentes métodos bem como a validação de soluções foi proposta a recolha de um conjunto de \datasets" de informação sensorial e de navegação. Para os mesmos foram definidos um conjunto de experiências e cenários experimentais. Foi projectado e implementado um setup experimental para a recolha dos \datasets" e realizadas experiências de recolha recorrendo a aeronaves tripuladas. O setup desenvolvido incorpora um sistema inercial de alta precisão, duas câmaras digitais sincronizadas (possibilitando análise de informa formação stereo) e um receptor GPS. As aeronaves alvo transportam um receptor GPS com logger incorporado permitindo a correlação espacial dos resultados de detecção. Com este sistema foram recolhidos dados referentes a cenários de aproximação com diferentes trajectórias e condições ambientais bem como incorporando movimento do dispositivo detector. O método proposto foi validado para os datasets recolhidos tendo-se verificado, numa análise preliminar, a detecção do obstáculo (avião ultraleve) em todas as frames para uma distância inferior a 3 km com taxas de sucesso na ordem dos 95% para distâncias entre os 3 e os 4 km. Os resultados apresentados permitem validar a arquitectura proposta para a solução do problema de SAA em veículos aéreos autónomos e abrem perspectivas muito promissoras para desenvolvimento futuro com forte impacto técnico-científico bem como sócio-economico. A incorporação de informa formação de \ego motion" permite fornecer um forte incremento em termos de desempenho.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cluster analysis for categorical data has been an active area of research. A well-known problem in this area is the determination of the number of clusters, which is unknown and must be inferred from the data. In order to estimate the number of clusters, one often resorts to information criteria, such as BIC (Bayesian information criterion), MML (minimum message length, proposed by Wallace and Boulton, 1968), and ICL (integrated classification likelihood). In this work, we adopt the approach developed by Figueiredo and Jain (2002) for clustering continuous data. They use an MML criterion to select the number of clusters and a variant of the EM algorithm to estimate the model parameters. This EM variant seamlessly integrates model estimation and selection in a single algorithm. For clustering categorical data, we assume a finite mixture of multinomial distributions and implement a new EM algorithm, following a previous version (Silvestre et al., 2008). Results obtained with synthetic datasets are encouraging. The main advantage of the proposed approach, when compared to the above referred criteria, is the speed of execution, which is especially relevant when dealing with large data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies