1000 resultados para Black Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-a and its degradation products pheophytin-a, pyropheophytin-a, and 132,173-cyclopheophorbide-a-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment ?15N values indicate nitrate as the major uptake substrate but 15N-depletion towards the open marine setting indicates either contribution from N2-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last glacial-interglacial transition or Termination I (T I) is well documented in the Black Sea, whereas little is known about climate and environmental dynamics during the penultimate Termination (T II). Here we present a multi-proxy study based on a sediment core from the SE Black Sea covering the penultimate glacial and almost the entire Eemian interglacial (133.5 ±0.7-122.5 ±1.7 ka BP). Proxies comprise ice-rafted debris (IRD), O and Sr isotopes as well as Sr/Ca, Mg/Ca, and U/Ca ratios of benthic ostracods, organic and inorganic sediment geochemistry, as well as TEX86 and UK'37derived water temperatures. The ending penultimate glacial (MIS 6, 133.5 to 129.9 ±0.7 ka BP) is characterised by mean annual lake surface temperatures of about 9°C as estimated from the TEX86 palaeothermometer. This period is impacted by two Black Sea melt water pulses (BSWP-II-1 and 2) as indicated by very low Sr/Ca ostracods but high sedimentary K/Al values. Anomalously high radiogenic 87Sr/86Sr ostracod values (max. 0.70945) during BSWP-II-2 suggest a potential Himalayan source communicated via the Caspian Sea. The T II warming started at 129.9 ±0.7 ka BP, witnessed by abrupt disappearance of IRD, increasing d18O ostracod values, and a first TEX86 derived temperature rise of about 2.5°C. A second, abrupt warming step to ca. 15.5°C as the prelude of the Eemian warm period is documented at 128.3 ka BP. The Mediterranean-Black Sea reconnection most likely occurred at 128.1 ±0.7 ka BP as demonstrated by increasing Sr/Ca ostracods and U/Ca ostracods values. The disappearance of ostracods and TOC contents >2% document the onset of Eemian sapropel formation at 127.6 ka BP. During sapropel formation, TEX86 temperatures dropped and stabilised at around 9°C, while UK'37 temperatures remain on average 17°C. This difference is possibly caused by a habitat shift of Thaumarchaeota communities from surface towards nutrient-rich deeper and colder waters located above the gradually establishing halo-and redoxcline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Professor N. Andrussow, of Juriew (Dorpat) sent to the author a series of the deposit-samples collected in the Black Sea during the Russian explorations in 1890 and 1891 in the steamships Tschernomoretz, Zaporojetz, and Donetz. These deposits were submitted to careful microscopical examination and chemical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parameters of provision of the phytoplankton community with inorganic nitrogen compounds in the western Black Sea in April 1993 are analyzed (specifically, dependence of rates of uptake of nitrates and ammonium by microplankton on substrate concentration, diurnal dynamics of assimilation of mineral nitrogen, values of f-ratios, and proportions of carbon and nitrogen fluxes). In most cases all the parameters of degree of phytoplankton provision with mineral nitrogen are shown to vary unidirectionally, both at the surface and in the photosynthesis zone. Individual areas of a relatively small region studied differed markedly in their level of provision of algae with inorganic nitrogen compounds - from complete saturation to high degree of limitation of phytoplankton development due to nitrogen deficiency in the environment. Obtained results allow to estimate provision of Black Sea phytoplankton with nitrogen in terms of limitation of rates of uptake of its inorganic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n.º 227118.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive database of temperature, salinity and bio-chemical parameters in the Mediterranean and Black Sea has been constructed through comprehensive co-operation between the bordering countries. Statistical climatologies have been computed with all assembled and quality controlled data. The database, designed to initiate and validate prediction models, also represents a system to quality-check new incoming data produced by ocean observing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stomach contents of Diplodus vulgaris and Spondyliosoma cantharus were: analysed using three simple methods (numeric, gravimetric and frequency of occurrence) and a composite index (I.R.I - Index of Relative Importance). To compare the species, the Schoener index was used. The diet of D. vulgaris consisted mainly of ophiuroids, polychaetes, amphipods and echinoids, while polychaetes, amphipods and hydrozoans dominated in the case of S. cantharus. There were some size-related differences in S. cantharus feeding. Diet overlap was relatively slight, with significant differences in feeding between the two species, notably in terms of greater consumption of echinoderms by D. vulgaris and hydrozoans by S. cantharus. As is the case for the majority of sea breams, D. vulgaris and S. cantharus are characterised by a diverse diet in terms of prey reflecting available prey items in their environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleoenvironmental proxy data for ocean properties, eolian sediment input, and continental rainfall based on high-resolution analyses of sediment cores from the southwestern Black Sea and the northernmost Gulf of Aqaba were used to infer hydroclimatic changes in northern Anatolia and the northern Red Sea region during the last ~7500 years. Pronounced and coherent multicentennial variations in these records reveal patterns that strongly resemble modern temperature and rainfall anomalies related to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). These patterns suggest a prominent role of AO/NAO-like atmospheric variability during the Holocene beyond interannual to interdecadal timescales, most likely originating from solar output changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94-205 kya in the Mediterranean, and 31-67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim The Mediterranean region is a species-rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo-geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL-F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal-vicariance analysis. Results The emergence of the Cyclamen stem lineage is estimated at 30.1-29.2 Ma, and the crown divergence at 12.9-12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combined micropaleontological and geochemical analyses of the high-sedimentation gravity core M-4G provided new centennial-scale paleoceanographic data for sapropel S1 deposition in the NE Aegean Sea during the Holocene Climatic Optimum. Sapropel layer S1a (10.2–8.0 ka) was deposited in dysoxic to oxic bottom waters characterized by a high abundance of benthic foraminiferal species tolerating surface sediment and/or pore water oxygen depletion (e.g., Chilostomella mediterranensis, Globobulimina affinis), and the presence of Uvigerina mediterranea, which thrives in oxic mesotrophic-eutrophic environments. Preservation of organic matter (OM) is inferred based on high organic carbon as well as loliolide and isololiolide contents, while the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. High inputs of terrigenous OM are attributed to north Aegean borderland riverine inputs. Both alkenone-based sea surface temperatures (SSTs) and δO18G. bulloides records indicate cooling at 8.2 ka (S1a) and ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7–6.4 ka) is characterized by rather oxic conditions; abundances of foraminiferal species tolerant to oxygen depletion are very low compared with the U. mediterranea rise. Strongly fluctuating SSTs demonstrate repeated cooling and associated dense water formation, with a major event at 7.4 ka followed by cold spells at 7.0, 6.8, and 6.5 ka. The prominent rise of the carbon preference index within the S1b layer indicates the delivery of less degraded terrestrial OM. The increase of algal biomarkers, labile OM-feeding foraminifera and eutrophic planktonic species pinpoints an enhanced in situ marine productivity, promoted by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine OM along with fresher terrestrial OM inputs after ~7.7 ka imply sources alternative/additional to the north Aegean riverine borderland sources for the influx of organic matter in the south Limnos Basin, plausibly related to the inflow of highly productive Marmara/Black Sea waters.