991 resultados para Biological Engineering
Resumo:
To understand how bees, birds, and fish may use colour vision for food selection and mate choice, we reconstructed views of biologically important objects taking into account the receptor spectral sensitivities. Reflectance spectra a of flowers, bird plumage, and fish skin were used to calculate receptor quantum catches. The quantum catches were then coded by red, green, and blue of a computer monitor; and powers, birds, and fish were visualized in animal colours. Calculations were performed for different illumination conditions. To simulate colour constancy, we used a von Kries algorithm, i.e., the receptor quantum catches were scaled so that the colour of illumination remained invariant. We show that on land this algorithm compensates reasonably well for changes of object appearance caused by natural changes of illumination, while in water failures of von Kries colour constancy are prominent. (C) 2000 John Wiley & Sons, Inc.
Resumo:
This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Geoffrey M. Thiele and Simon Worrall. The presentations were (1) The chemistry of malondialdehyde-acetaldehyde (MAA) adducts, by Dean J. Tuma; (2) The formation and clearance of MAA adducts in ethanol-fed rats, by Simon Worrall; (3) Immune responses to MAA adducts may play a role in the development of alcoholic liver disease, by Lynell W. Klassen; (4) Unique biological responses to MAA-modifled proteins that may play a role in the development and/or progression of alcoholic liver disease, by Geoffrey M. Thiele; (5) MAA-adducted bovine serum albumin activates protein kinase C and stimulates interleukin-8 release in bovine bronchial epithelial cells, by Todd A. Wyatt; and (6) An enzyme immune assay for serum antiacetaldehyde adduct antibody using low-density lipoprotein-adduct and its significance in alcoholic liver injury and ALDH2 heterozygotes, by Naruhiko Nagata.
Resumo:
Measurement of nitrifiable nitrogen contained in wastewater by combining the existing respirometric and titrimetric principles is reported. During an in-sensor-experiment using nitrifying activated sludge. both the dissolved oxygen (DO) and pH in the mixed liquor were measured, and the FH was controlled at a set-point through titration of base or acid. A combination of the oxygen uptake rate (OUR), which was obtained from the measured DO signal, and the titration data allowed calculation of the nitrifiable nitrogen and the short-term biological oxygen demand (BOD) of the wastewater sample that was initially added to the sludge. The calculation was based solely on stoichiometric relationships. The approach was preliminarily tested with two types of wastewaters using a prototype sensor. Good correlation was obtained. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An outbreak of acute liver failure occurred at a dialysis center in Caruaru, Brazil (8 degrees 17 'S, 35 degrees 58 'W), 134 km from Recife, the state capital of Pernambuco. At the clinic, 116 (89%) of 131 patients experienced visual disturbances, nausea, and vomiting after routine hemodialysis treatment on 13-20 February 1996. Subsequently, 100 patients developed acute liver failure, and of these 76 died. As of December 1996, 52 of the deaths could be attributed to a common syndrome now called Caruaru syndrome. Examination of phytoplankton from the dialysis clinic's water source, analyses of the clinic's water treatment system, plus serum and liver tissue of clinic patients led to the identification of two groups of cyanobacterial toxins, the hepatotoxic cyclic peptide microcystins and the hepatotoxic alkaloid cylindrospermopsin. Comparison of victims' symptoms and pathology using animal studies of these two cyanotoxins leads us to conclude that the major contributing factor to death of the dialyses patients was intravenous exposure to microcystins, specifically microcystin-YR, -LR, and -AR. From liver concentrations and exposure volumes, it was estimated that 19.5 mug/L microcystin was in the water used for dialysis treatments. This is 19.5 times the level set as a guideline for safe drinking water supplies by the World. Health Organization.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.
Resumo:
Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20 degreesC. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.
Resumo:
The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.
Resumo:
Numerous studies on the relationship between the structure and function of peptide agonists derived from the biologically active, C-terminal region of human C5a anaphylatoxin have been reported over the past decade. These studies have been performed with the objective of parlaying this structure-function information into the design of peptide/peptidomimetic modulators of C5a receptor (C5aR)-mediated function. In this review, we describe a rational approach for the development of conformationally biased, decapeptide agonists of C5a and described how these stabilized and specific conformational features relate to the expression of specific C5a-like activities in vitro and in vivo. The therapeutic potential of such response-selective C5a agonists is discussed and underscored by the results of one such response-selective C5a agonist that was used in vivo as an effective molecular adjuvant capable of generating antigen-specific humoral and cellular immune responses. Finally, we describe the synthesis of a new generation of highly response-selective, conformationally biased C5a agonist and discuss the in vitro and in vivo biologic results that so indicate this biologic selectivity.
Resumo:
The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.