930 resultados para Bacterial decrease coefficient
Resumo:
Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.
Resumo:
Abstract: Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Resumo:
The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
The aim of the present paper was to evaluate the larvicidal effect of Enterococcus faecalis CECT7121 (Ef7121) on the Toxocara canis cycle both in vitro and in vivo. For the in vitro experiments, T. canis larvae were incubated with the supernatants of Ef7121 (EI) and mutant Ef7121 (EIm), in a pre-culture of Ef7121 (EII) and in a fresh culture with Ef7121 (EIII) and the Ef7121 mutant strain (EIIIm). The viability of the larvae was calculated after a 48 h incubation. A significant reduction of the viability of T. canis larvae was observed in EI, EII and EIII. A decrease of this inhibitory effect was observed in EIm and EIIIm (p = 0.008). In the in vivo experiments, mice were orally inoculated with three doses of Ef7121. To study the probiotic persistence in the intestine, the animals were sacrificed every four days and their intestines were dissected. The initial average bacterial levels were 9.7 x 10(4) for Ef7121 (colony forming units/g). At the end of the assay the levels were 1.46 x 10(4). No bacterial translocation was detected in mesenteric lymphatic nodules and spleen. Ef7121 interference with the biological cycle was evaluated in mice challenged with T. canis. The interference was significant when the mice were challenged with probiotic and T. canis simultaneously (p = 0.001), but it was not significant when the challenge was performed 15 days after administration of the bacterial inoculum (p = 0.06). In conclusion, Ef7121 possessed in vitro and in vivo larvicidal activity.
Resumo:
Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.
Resumo:
Enteroinvasive Escherichia coli (EIEC) and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i) bacterial escape from macrophages after phagocytosis, (ii) macrophage death induced by EIEC and S. flexneri, (iii) macrophage cytokine expression in response to infection and (iv) expression of plasmidial (pINV) virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.
Resumo:
Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.
Resumo:
BACKGROUND Only multifaceted hospital wide interventions have been successful in achieving sustained improvements in hand hygiene (HH) compliance. METHODOLOGY/PRINCIPAL FINDINGS Pre-post intervention study of HH performance at baseline (October 2007-December 2009) and during intervention, which included two phases. Phase 1 (2010) included multimodal WHO approach. Phase 2 (2011) added Continuous Quality Improvement (CQI) tools and was based on: a) Increase of alcohol hand rub (AHR) solution placement (from 0.57 dispensers/bed to 1.56); b) Increase in frequency of audits (three days every three weeks: "3/3 strategy"); c) Implementation of a standardized register form of HH corrective actions; d) Statistical Process Control (SPC) as time series analysis methodology through appropriate control charts. During the intervention period we performed 819 scheduled direct observation audits which provided data from 11,714 HH opportunities. The most remarkable findings were: a) significant improvements in HH compliance with respect to baseline (25% mean increase); b) sustained high level (82%) of HH compliance during intervention; c) significant increase in AHRs consumption over time; c) significant decrease in the rate of healthcare-acquired MRSA; d) small but significant improvements in HH compliance when comparing phase 2 to phase 1 [79.5% (95% CI: 78.2-80.7) vs 84.6% (95% CI:83.8-85.4), p<0.05]; e) successful use of control charts to identify significant negative and positive deviations (special causes) related to the HH compliance process over time ("positive": 90.1% as highest HH compliance coinciding with the "World hygiene day"; and "negative":73.7% as lowest HH compliance coinciding with a statutory lay-off proceeding). CONCLUSIONS/SIGNIFICANCE CQI tools may be a key addition to WHO strategy to maintain a good HH performance over time. In addition, SPC has shown to be a powerful methodology to detect special causes in HH performance (positive and negative) and to help establishing adequate feedback to healthcare workers.
Resumo:
Background: Mortality from invasive meningococcal disease (IMD) has remained stable over the last thirty years and it is unclear whether pre-hospital antibiotherapy actually produces a decrease in this mortality. Our aim was to examine whether pre-hospital oral antibiotherapy reduces mortality from IMD, adjusting for indication bias. Methods: A retrospective analysis was made of clinical reports of all patients (n = 848) diagnosed with IMD from 1995 to 2000 in Andalusia and the Canary Islands, Spain, and of the relationship between the use of pre-hospital oral antibiotherapy and mortality. Indication bias was controlled for by the propensity score technique, and a multivariate analysis was performed to determine the probability of each patient receiving antibiotics, according to the symptoms identified before admission. Data on in-hospital death, use of antibiotics and demographic variables were collected. A logistic regression analysis was then carried out, using death as the dependent variable, and prehospital antibiotic use, age, time from onset of symptoms to parenteral antibiotics and the propensity score as independent variables. Results: Data were recorded on 848 patients, 49 (5.72%) of whom died. Of the total number of patients, 226 had received oral antibiotics before admission, mainly betalactams during the previous 48 hours. After adjusting the association between the use of antibiotics and death for age, time between onset of symptoms and in-hospital antibiotic treatment, pre-hospital oral antibiotherapy remained a significant protective factor (Odds Ratio for death 0.37, 95% confidence interval 0.15–0.93). Conclusion: Pre-hospital oral antibiotherapy appears to reduce IMD mortality.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
Streptococcus pneumoniae remains an important cause of bacteremia worldwide. Last years, a decrease of S. pneumoniae penicillin-resistant isolates has been observed. The objective of this study was to describe the episodes of bacteremia due to S. pneumoniae during a period of 11 years. Epidemiological and clinical data, serotypes causing bacteremia, antibiotic susceptibility and prognosis factors were studied. Over a period of 11 years, all the episodes of S. pneumoniae bacteremia were analysed. Their clinical and microbiological features were recorded. Statistical analysis was carried out to determine risk factors for pneumococcal bacteremia and predictors of fatal outcome. Finally, 67 S. pneumoniae bacteremia episodes were included in this study. The majority of cases were produced in white men in the middle age of their life. The main predisposing factors observed were smoking, antimicrobial and/or corticosteroids administration, chronic pulmonary obstructive disease and HIV infection, and the most common source of bacteremia was the low respiratory tract. The main serotypes found were 19A, 1, 14 and 7F. Seventy-seven percent of these isolates were penicillin-susceptible, and the mortality in this serie was really low. Statistical significance was observed between age, sex and race factors and the presence of bacteremia, and there was relationship between the patient’s condition and the outcome. In our study, S. pneumoniae bacteremia is mainly from community-acquired origin mainly caused in men in the median age of the life. 40% of bacteremias were caused by serotypes 19A, 1, 7F and 14. During the period of study the incidence of bacteremia was stable and the mortality rate was very low.
Resumo:
Rapport de synthèse : Objectifs : évaluer la survie intra-hospitalière des patients présentant un infarctus du myocarde avec sus-décalage du segment ST admis dans les hôpitaux suisses entre 2000 et 2007, et identifier les paramètres prédictifs de mortalité intra-hospitalière et d'événements cardio-vasculaires majeurs (infarctus, réinfarctus, attaque cérébrale). Méthode : utilisation des données du registre national suisse AMIS Plus (Acute Myocardial lnfarction and Unstable Angina in Switzerland). Tous les patients admis pour un infarctus du myocarde avec sus-décalage du segment ST ou bloc de branche gauche nouveau dans un hôpital suisse participant au registre entre janvier 2000 et décembre 2007 ont été inclus. Résultats: nous avons étudié 12 026 patients présentant un infarctus du myocarde avec sus-décalage du segment ST ou bloc de branche gauche nouveau admis dans 54 hôpitaux suisses différents. L'âge moyen est de 64+-13 ans et 73% des patients inclus sont des hommes. L'incidence de mortalité intra-hospitalière est de 7.6% en 2000 et de 6% en 2007. Le taux de réinfarctus diminue de 3.7% en 2000 à 0.9% en 2007. L'utilisation de médicaments thrombolytiques chute de 40.2% à 2% entre 2000 et 2007. Les paramètres prédictifs cliniques de mortalité sont : un âge> 65-ans, une classe Killips Ill ou IV, un diabète et un infarctus du myocarde avec onde Q (au moment de la présentation). Les patients traités par revascularisation coronarienne percutanée ont un taux inférieur de mortalité et de réinfarctus (3.9% versus 11.2% et 1.1% versus 3.1%, respectivement, p<0.001) sur la période de temps étudiée. Le nombre de patients traités par revascularisation coronarienne percutanée augmente de 43% en 2000 à 85% en 2007. Les patients admis dans les hôpitaux bénéficiant d'une salle de cathétérisme cardiaque ont un taux de mortalité plus bas que les patients hopitalisés dans les centres sans salle de cathétérisme cardiaque. Mais les caractéristiques démographiques de ces deux populations sont très différentes. La mortalité intra-hospitalière ainsi que le taux de réinfarctus diminuent significativement au cours y de la période étudiée, parallèlement à l'augmentation de |'utilisation de la revascularisation coronarienne percutanée. La revascularisation coronarienne percutanée est le paramètre prédictif de survie le plus important. Conclusion: la mortalité intra-hospitalière et le taux de réinfarctus du myocarde ont diminué de manière significative chez les patients souffrant d'un infarctus du myocarde avec sus-décalage du segment ST au cours de ces sept dernières années, parallèlement à l'augmentation significative de la revascularisation coronarienne percutanée en plus de la thérapie médicamenteuse. La survie n'est È pas liée au lieu d'hospitalisation mais à l'accès à une revascularisation coronarienne percutanée.
Resumo:
BACKGROUND A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
Resumo:
The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa, and identified mutants with attenuated virulence towards Dictyostelium. These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa.