998 resultados para BAND-GAP RENORMALIZATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this investigation transparent conducting properties of as-deposited and annealed ZnO:Sn:F films deposited using different spray flux density by changing the solvent volume (10 mL, 20 mL ... 50 mL) of the starting solutions have been studied and reported. The structural analyses of the films indicate that all the films have hexagonal wurtzite structure of ZnO with preferential orientation along (002) plane irrespective of the solvent volume and annealing treatment whereas, the overall crystalline quality of the films is found to be enhanced with the increase in solvent volume as well as with annealing. This observed enhancement is strongly supported by the optical and surface morphological results. From the measurements of electrical parameters, it is seen that, the annealed films exhibit better electrical properties compared to the as-deposited ones. Annealing has caused agglomeration of grains as confirmed by the surface morphological studies. Also, the annealing process has led to an improvement in the optical transparency as well as band gap. It is found from the analyses of the characteristics of the as- deposited and annealed films that the annealed film deposited from starting solution having solvent volume of 50 mL is optimal in all respects, as it possesses all the desirable characteristics including the quality factor (1.60 x 10(-4) (Omega/sq.)(-1)). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk samples of S40Se60,Sb-x (with x=10, 20, 30 and 40 at. %) were prepared from high purity chemicals by melt quenching technique. The samples compositions were confirmed by using energy dispersive analysis of X-rays. X-ray diffraction studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with compositional has been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The optical band gap of the thin films is found to be decreased with composition. Increasing Sb content was found to affect the structural and optical properties of bulk samples. The intensity of core level spectra changes with the addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly show the structural modifications due to Sb addition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile sol-gel process onto larger substrates. Temperature dependence of the process control of deposition and desired phase formations was studied in detail. Films were analyzed for complete transformation from amorphous to polycrystalline, with textured structures for stannite phase, as reflected from the X-ray diffraction and with nearly stoichiometric compositions of Cu:Co:Sn:S = 2:0:1:0:1:0:4:0 from EDAX analysis. Morphological investigations revealed that the CCTS films with larger grains, on the order of its thickness, were synthesized at higher temperature of 500 degrees C. The optimal band gap for application in photovoltaics was estimated to be 1.4 eV. Devices with SLG/CCTS/Al geometry were fabricated for real time demonstration of photoconductivity under A.M 1.5 G solar and 1064 rim infrared laser illuminations. A photodetector showed one order current amplification from similar to 1.9 X 10(-6) A in the dark to 2.2 x 10(-5) A and 9.8 X 10(-6) A under A.M 1.5 G illumination and 50 mW cm(-2) IR laser, respectively. Detector sensitivity, responsivity, external quantum efficiency, and gain were estimated as 4.2, 0.12 A/W, 14.74% and 14.77%, respectively, at 50 mW cm(-2) laser illuminations. An ON and OFF ratio of 2.5 proved that CCTS can be considered as a potential absorber in low cost photovoltaics applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g= 4.195 which is attributed to Eu2+ ions. Further, EPR and thermo-luminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stoichiometric tin (II) sulfide (SnS) nano-structures were synthesized on SnS(010)/glass substrates using a simple and low-temperature chemical solution method, and their physical properties were investigated. The as-synthesized SnS nanostructures exhibited orthorhombic crystal structure and most of the nanocrystals are preferentially oriented along the <010> direction. These nanostructures showed p-type electrical conductivity and high electrical resistivity of 93 Omega cm. SnS nanostructures exhibited a direct optical band gap of 1.43 eV. While increasing the surrounding temperature from 20 to 150 degrees C, the electrical resistivity of the structures decreased and exhibited the activation energy of 0.28 eV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the influence of Al doping on the microstructural, optical, and electrical properties of spray-deposited WO3 thin films. XRD analyses confirm that all the films are of polycrystalline WO3 in nature, possessing monoclinic structure. EDX profiles of the Al-doped films show aluminum peaks implying incorporation of Al ions into WO3 lattice. On Al doping, the average crystallite size decreases due to increase in the density of nucleation centers at the time of film growth. The observed variation in the lattice parameter values on Al doping is attributed to the incorporation of Al ions into WO3 lattice. Enhancement in the direct optical band gap compared to the undoped film has been observed on Al doping due to decrease in the width of allowed energy states near the conduction band edge. The refractive indices of the films follow the Cauchy relation of normal dispersion. Electrical resistivity compared to the undoped film has been found to increase on Al doping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical doping of graphene becomes necessary to create a band gap which is useful for various applications. Furthermore, chemical doping of elements like boron and nitrogen in graphene gives rise to useful properties. Since chemically doped graphene is both of academic and technical importance, we have prepared this article on the present status of various aspects of this important class of materials. In doing so, we have covered the recent literature on this subject citing all the major references. Some of the aspects that we have covered are the synthesis of chemically doped graphene followed by properties and applications. The applications discussed relate to gas adsorption, lithium batteries, supercapacitors, oxygen reduction reaction, field emission and photochemical water splitting. Characterization of chemically doped graphene also included. We believe that the article will be useful to all those interested in graphene and related materials and provides the present status of the subject. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigations on the electrical switching, structural, optical and photoacoustic analysis have been undertaken on chalcogenide GeSe1.5S0.5 thin films of various thicknesses prepared by vacuum evaporation technique. The decrease of band gap energy with increase in film thickness has been explained using the `density of states model'. The structural units of the films are characterized using Raman spectroscopy and the deconvoluted Raman peaks obtained from Gaussian fit around 188 cm(-1), 204 cm(-1) and 214 cm(-1) favors Ge-chalcogen tetrahedral units forming corner and edge sharing tetrahedra. All the thin films samples have been exhibited memory-type electrical switching behavior. An enhancement in the threshold voltages of GeSe1.5S0.5 thin films have been observed with increase in film thickness. The thickness dependence of switching voltages provide an insight into the switching mechanism and it is explained by the Joule heating effect. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfurization of Cu(In,Al)Se-2 films is carried out in an indigenously made set up at moderately low temperature. The films are sulfurized for different time durations of 15, 30, 45 and 60 min at 150 degrees C. InSe and Cu2S phases occurred in the films during the initial stage of sulfurization along with Cu(In,Al)(Se,S)(2) phase. The compositional analysis shows that the sulfur incorporation is saturated after 30 min. Crystallinity increased with the increase in sulfurization time. The band gap of the Cu(In,Al)Se-2 film increased up to 1.35 eV with the addition of sulfur. Single phase Cu(In,Al)(Se,S)(2) with high crystallinity is obtained after 60 min of sulfurization. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiO2 thin films with 0.2 wt%, 0.4 wt%, 0.6 wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol-gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction (XRD) patterns for doped films at 0.2 wt% and 0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2 exhibits (101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nano-structured highly porous shell morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel crystalline tetragonal ZrO2: Eu3+ phosphors were prepared by a facile and efficient low temperature solution combustion method at 400 +/- 10 degrees C using oxalyl dihydrazide (ODH) as fuel. The powder X-ray diffraction patterns and Rietveld confinement of as formed ZrO2: Eu3+ (1-11 mol%) confirmed the presence of body centered tetragonal phase. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 7-17 nm. These results were in good agreement with transmission electron microscopy studies. The calculated microstrain in most of the planes indicated the presence of tensile stress along various planes of the particles. The observed space group (P4(2)/nmc) revealed the presence of cations in the 2b positions (0.75, 0.25, 0.25) and the anions in the 4d positions (0.25, 0.25, 0.45). The optical band gap energies estimated from Wood and Tauc's relation was found to be in the range 4.3-4.7 eV. Photoluminescence (PL) emission was recorded under 394 and 464 nm excitation shows an intense emission peak at 605 nm along with other emission peaks at 537, 592, 605 and 713 nm. These emission peaks were attributed to the transition of D-5(0) -> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. The high ratio of Intensity of (D-5(0) -> F-7(2)) and (D-5(0) -> F-7(1)) infers that Eu3+ occupies sites with a low symmetry and without an inversion center. CIE color coordinates indicated the red regions which could meet the needs of illumination devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensitive dependence of the electronic and thermoelectric properties of MoS2 on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS2 can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS2 emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles density functional theory calculations, we show a semimetal to semiconducting electronic phase transition for bulk TiS2 by applying uniform biaxial tensile strain. This electronic phase transition is triggered by charge transfer from Ti to S, which eventually reduces the overlap between Ti-(d) and S-(p) orbitals. The electronic transport calculations show a large anisotropy in electrical conductivity and thermopower, which is due to the difference in the effective masses along the in-plane and out-of-plane directions. Strain-induced opening of band gap together with changes in dispersion of bands lead to threefold enhancement in thermopower for both p-and n-type TiS2. We further demonstrate that the uniform tensile strain, which enhances the thermoelectric performance, can be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at Ti sites.