974 resultados para Atmospheric Circulation
Resumo:
The present-day condition of bipolar glaciation characterized by rapid and large climate fluctuations began at the end of the Pliocene with the intensification of the Northern Hemisphere continental glaciations. The global cooling steps of the late Pliocene have been documented in numerous studies of Ocean Drilling Program (ODP) sites from the Northern Hemisphere. However, the interactions between oceans and between land and ocean during these cooling steps are poorly known. In particular, data from the Southern Hemisphere are lacking. Therefore I investigated the pollen of ODP Site 1082 in the southeast Atlantic Ocean in order to obtain a high-resolution record of vegetation change in Namibia between 3.4 and 1.8 Ma. Four phases of vegetation development are inferred that are connected to global climate change. (1) Before 3 Ma, extensive, rather open grass-rich savannahs with mopane trees existed in Namibia, but the extension of desert and semidesert vegetation was still restricted. (2) Increase of winter rainfall dependent Renosterveld-like vegetation occurred between 3.1 and 2.2 Ma connected to strong advection of polar waters along the Namibian coast and a northward shift of the Polar Front Zone in the Southern Ocean. (3) Climatically induced fluctuations became stronger between 2.7 and 2.2 Ma and semiarid areas extended during glacial periods probably as the result of an increased pole-equator thermal gradient and consequently globally enhanced atmospheric circulation. (4) Aridification and climatic variability further increased after 2.2 Ma, when the Polar Front Zone migrated southward and the influence of Atlantic moisture brought by the westerlies to southern Africa declined. It is concluded that the positions of the frontal systems in the Southern Ocean which determine the locations of the high-pressure cells over the South Atlantic and the southern Indian Ocean have a strong influence on the climate of southern Africa in contrast to the climate of northwest and central Africa, which is dominated by the Saharan low-pressure cell.
Resumo:
Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK'37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during 'Heinrich Event 1' (H1). On the other hand, for the time period corresponding to the 'Younger Dryas' (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an 'anti-phase' thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.
Trace element abundance, and Sr and Nd isotope ratios of dust samples in the Pacific Ocean (Table 2)
Resumo:
Eolian dust preserved in deep-sea sediment cores provides a valuable indicator of past atmospheric circulation and continental paleoclimate. In order to identify the provenance of eolian dust, Nd and Sr isotopic compositions and Rb, Sr and rare earth element (REE) concentrations have been determined for the silicate fractions of deep-sea sediments from the north and central Pacific Ocean. Different regions of the Pacific Ocean are characterized by distinct air-borne inputs, producing a large range in epsolin-Nd (-10 to +1), 87Sr/86Sr (0.705-0.721), La/Yb (5-15), EuN/EuN* (0.6-1.0) and Sr/Nd (4-33). The average Nd isotopic composition of Pacific deep-sea sediments (epsilon-Nd = -6), is more radiogenic than the average from the Atlantic (epsilon-Nd = -8). In contrast, the average147Sm/144Nd ratio for Pacific sediments (0.114) is identical to that of Atlantic sediments and to that of global average riverine suspended material. The values of epsilon-Nd and147Sm/144Nd are positively correlated for the Pacific samples but negatively correlated for Atlantic samples, reflecting a fundamental difference between the dominant components in the end members with radiogenic Nd (island-arc components in the Pacific and LREE-enriched intraplate ocean island components in the Atlantic). Samples from the north central Pacific have distinctive unradiogenic epsilon-Nd values of -10, 87Sr/86Sr > 0.715, high La/Yb (> 12), and low EuN/EuN* (0.6) and Sr/Nd (3-6). These data are virtually identical to the values for loess from Asia and endorse the use of these sediments as indicators of Asian paleoclimate and paleowind directions. Island-arc contributions appear to dominate in the northwest Pacific, resulting in higher epsilon Nd (-1 to +1) and lower 87Sr/86Sr (~ 0.705) and La/Yb (~ 5). Sediments from the eastern Pacific tend to have intermediate Sr and Nd isotopic compositions but regionally variable Sr/Nd and REE patterns; they appear to be derived from the west margin of the North and South American continents, rather than from Asia. Our results confirm that dust provenance can be constrained by isotopic and geochemical analyses, which will facilitate reconstructions of past atmospheric circulation and continental paleoclimate.
Resumo:
Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (d18Obf and d13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive d18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the d18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such d18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.
Resumo:
To reconstruct the deep-water circulation for the last 3.5 Ma from deep-sea sediments of the eastern equatorial Atlantic, sea floor morphology, sub-bottom reflectors and the echo character have been mapped on the basis of 3.5 kHz records and sediment cores. Physical properties of sediments and synthetic seismograms derived from them enable us to decipher reflector sequences in environments of pelagic, current-resuspended and turbidity sedimentation. The individual reflectors originate from carbonate dissolution, hiatus, coarse sand layers and interferences. Those which are related to carbonate dissolution and hiatus provide evidence of water-mass boundaries by their distribution. Five phases of different deep-water circulation can be seen in the record of th elast 3.5 Ma, and these are related to climate history: 1. Between 3.7 Ma and 2.2 Ma a strong deep-water circulation indicates a northward flow of bottom water below 4200 m (AABW = Antarctic-Bottom Water) and a southward flow of deep-water above 4200 m (NADW = North-Atlantic Deep Water). 2. Between 1.6 and 1.4 Ma a southward flow of bottom water below 4500 m and a diminished southward flow above 4500 m can be detected. This water-mass geometry can be interpreted by an expansion of the NADW-masses and a displacement of the AABW-masses during the same time. 3. Since 1.4 Ma a northward flow of a bottom-water current developed again. This current flow created a leeside sediment ridge in the southern part of the Kane Gap and furrows in the northern part of it. 4. Between 400,000 and 200,000 yrs B. P. the oceanic and atmospheric circulation increased. The strengthened oceanic circulation caused and increase in carbonate dissolution, which is documented by a traceable reflector from 2800 m to 4500 m water depth. At the same time an increase of the atmospheric circulation caused a drastic rise in the pelagic sediment accumulation (> 100 %) through an intensification of upwelling. This runs parallel with a higher oceanic productivity in the northern equatorial divergence zone and an enhanced supply of fluvial and probably eolian sediments from the Senegal and Guinea. 5. Before 10,000 yrs B. P. an erosive northward flowing bottom-water current prevailed below 4500 m water depth. After 10,000 yrs B.P. the bottom-water flow was sluggish and non erosive.