922 resultados para Antioxidant Enzymes
Resumo:
Although there is no consensus about the use of glucose and thiamine for the treatment of acute ethanol intoxication, this is a routine practice in many countries. Our objective was to determine the efficacy of this treatment and the changes it causes in the antioxidant status of the liver. Male Wistar rats were intoxicated with an ethanol dose of 5 g/kg and divided into three groups: ethanol (EtOH; untreated), EtOH+G (treated with glucose), and EtOH+B1 (treated with thiamine). Blood and urinary ethanol as well as hepatic malondialdehyde, reduced glutathione and vitamin E were determined in all animals. Blood alcohol levels did not differ between groups, although urinary excretion was about four times higher in the group treated with thiamine (EtOH+B1). The malondialdehyde, reduced glutathione and vitamin E values used here as parameters of the antioxidant system of the liver showed improvement for the thiamine-treated group (EtOH+B1). Treatment with glucose or thiamine was ineffective in reducing blood alcohol levels in rats with acute ethanol intoxication. However, the beneficial effect of thiamine as an antioxidant for ethanol metabolism was demonstrated. Further investigations are necessary to clarify the urinary excretion of ethanol reported here for the first time and the possibility of using thiamine as an antioxidant in situations of chronic alcohol use.
Resumo:
The interindividual variation in the activity of xenobiotic metabolizing enzymes and DNA repair genes could modify an individual`s risk of recurrent malignancy and response to therapy. We investigated whether ALL outcome was related to polymorphisms in genes CYP2D6. MPO, EPHX1, NQO1, TS, XPD and XRCC1 in 95 consecutive ALL children by PCR or PCR-FRLP techniques. Polymorphisms in genes NQO1 and TS were associated with a significantly slow response to induction chemotherapy and NQO1 was also associated with a lower five-year event-free survival. This study suggests that polymorphisms of NQO1 and TS could be important for patient response to induction therapy and for treatment outcome. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Polymorphic variations of several genes associated with drugs and xenobiotic metabolism have been linked to the factors that predispose to the carcinogenesis process. As considerable interindividual and interethnic variation in metabolizing enzyme activity has been associated with polymorphic alleles, we evaluated the frequency of the polymorphisms of CYP2D6, EPHX1 and NQO1 genes in 361 Brazilian individuals separated by ethnicity (European and African ancestry), using the polymerase chain reaction-restriction fragment length (PCR-RFLP) method. The allele frequencies of the variants *3 and *4 for the gene CYP2D6 were 0.04 and 0.14 for white subjects and 0.03 and 0.10 for black individuals, respectively. For the both variants of the gene EPHX1, we found higher allele frequencies among white individuals compared with mulatto subjects (0.62 vs 0.54 and 0.18 vs 0.14, respectively); however, these differences were not statistically significant (p = 0.39 and 0.56, respectively). For the NQO1 gene we observed a higher frequency of the homozygous genotype among black individuals (7.9%) compared with white subjects (6.3%) (p = 0.003). The genotype frequencies were within the Hardy-Weinberg equilibrium. We concluded that the allele frequencies of CYP2D6, EPHX1 and NQO1 gene polymorphisms in this Brazilian population showed ethnic variability when compared with those observed in other populations.
Resumo:
Bovine leukemia virus (BLV) is among the most widespread livestock pathogens in many countries. Despite advances in understanding the pathogenesis of this disease, little is known about the involvement of oxidative stress. Therefore, this study examined the antioxidant status and the markers of oxidative stress in BLV-infected dairy cows. BLV infection was associated with an increase in triacylglycerol levels, a decrease in glutathione peroxidase (GSH-Px) activity and a tendency toward lower superoxide dismutase activity in the infected animals. No significant difference was observed in other markers of oxidative stress (i.e., conjugated dienes, hydroperoxides and malondialdehyde) in the infected animals compared to controls. A novel method for the analysis of oxidative stress, Z-scan based on the measurement of the mean-value of 9 in low density lipoprotein indicated that the infected animals had low-density lipoprotein particles that were slightly less modified than those from the healthy group. Thus, we conclude that BLV infection is associated with a selective decrease in GSH-Px activity without any alteration in the common plasma markers of oxidative stress. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p <= 0.05). Dental pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.
Resumo:
Enzymes are crucial for the metabolism of macromolecular substrates. In the great majority of cells, most enzymes are constitutive. Nevertheless, inducible enzymes can predominate, determining specialized cell functions. Within this context, histochemistry/immunohistochemistry and biochemistry were used to investigate expression of peroxidase and reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-oxidase, as well as the expression and activity of cathepsin D and acid phosphatase, in trophoblast cells within the endotheliochorial labyrinth and marginal hematoma of the term cat placenta. In the marginal hematoma, elevated Cathepsin D expression and activity was accompanied by erythrophagocytosis. In contrast, acid phosphatase activity was much more intense in the labyrinth, where metabolic exchanges occur. Peroxidase and NAD(P)H-oxidase were predominantly active in trophoblast cells within endosomal vesicles of different placental compartments, indicating that, although reactive oxygen species might participate in endosomal/lysosomal processes, they are not territorially specific or functional markers. These findings highlight differential characteristics of cathepsin D and acid phosphatase activity within each placental compartment, thereby contributing to the comprehension of the territorial role played by the placenta and facilitating future metabolic studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P<0.05) and prevented vascular hypertrophy (P<0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P<0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.
Resumo:
Background and purpose: Increased oxidative stress and up-regulation of matrix metalloproteinases (MMPs) may cause structural and functional vascular changes in renovascular hypertension. We examined whether treatment with spironolactone (SPRL), hydrochlorothiazide (HCTZ) or both drugs together modified hypertension-induced changes in arterial blood pressure, aortic remodelling, vascular reactivity, oxidative stress and MMP levels and activity, in a model of renovascular hypertension. Experimental approach: We used the two-kidney,one-clip (2K1C) model of hypertension in Wistar rats. Sham-operated or hypertensive rats were treated with vehicle, SPRL (25 mg center dot kg-1 center dot day-1), HCTZ (20 mg center dot kg-1 center dot day-1) or a combination for 8 weeks. Systolic blood pressure was monitored weekly. Aortic rings were isolated to assess endothelium-dependent and -independent relaxations. Morphometry of the vascular wall was carried out in sections of aorta. Aortic NADPH oxidase activity and superoxide production were evaluated. Formation of reactive oxygen species was measured in plasma as thiobarbituric acid-reactive substances. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry and immunohistochemistry. Key results: Treatment with SPRL, HCTZ or the combination attenuated 2K1C-induced hypertension, and reversed the endothelial dysfunction in 2K1C rats. Both drugs or the combination reversed vascular aortic remodelling induced by hypertension, attenuated hypertension-induced increases in oxidative stress and reduced MMP-2 levels and activity. Conclusions and implications: SPRL or HCTZ, alone or combined, exerted antioxidant effects, and decreased renovascular hypertension-induced MMP-2 up-regulation, thus improving the vascular dysfunction and remodelling found in this model of hypertension.